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A Godunov-type Finite-Volume Scheme for Flows on the
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A Godunov-type finite volume scheme based on unstructured adaptive grids is described
for simulating flows on the meso-, micro- and urban-scales. The higher-order spatial
accuracy is achieved via gradient reconstruction techniques after van Leer and the fotal
variation diminishing condition is enforced with the help of slope-limiters. A multi-stage
explicit Runge-Kutta time marching scheme is implemented for higher-order accuracy in
time. The scheme is conservative and exhibits minimal numerical dispersion and diffusion.
The sub-grid scale diffusion in the model is parameterized via the Smagorinsky-Lilly
turbulence closure. Different benchmark and idealized test cases are simulated for the
validation of the numerical scheme.

I. Introduction

he height of the Earth’s atmosphere is orders of magnitude smaller compared to its circumference. Therefore

the scale of horizontal flow is much larger than that in the vertical and the vertical pressure distribution is
essentially hydrostatic. The small deviations from the hydrostatic balance due to temperature gradients across
latitudes created by Earth’s diurnal cycle, coupled with Coriolis force due its rotation act as the main drivers for
atmospheric flows. On a broad scale, the atmospheric flows can be divided into hydrostatic and non-hydrostatic
flows. Non-hydrostatic flows can span spatial scales ranging from several meters to several kilometers and time
scales ranging from minutes to several hours. The hydrostatic flows in which the non-hydrostatic motions are
embedded have scales that are orders of magnitude larger than the non-hydrostatic flows. This study focuses on the
simulation of flows on the local scales, where the vertical spatial scales become comparable with the distances in the
horizontal, and thus the hydrostatic flow model is no longer valid.

One interesting dilemma faced by the atmospheric modelers is the treatment of density. The density does not
vary by much in the horizontal but in the vertical there are significant variations in density. Historically, the
numerical modelers have preferred to treat the atmosphere as an incompressible fluid. This is true for nearly all of
the current operational meso-scale models in use — e.g., the Regional Atmospheric Modeling System (RAMS)*.
Although the incompressible/anelastic approximation has seen wide success, its limitations (the anelastic equation
set is a subset of the fully-compressible equation set) have prompted atmospheric modelers to keep researching
algorithms/methodologies for solving the fully compressible equation set' ** *°. It has been argued that the
computational advantage of a larger time step in anelastic approximation is often overshadowed by the
computational overhead involved in solving the elliptic equation for pressure at each time step. Furthermore, the
anelastic approximation can fail to simulate processes in which the compressibility effects cannot be neglected, such
as tornadoes*’ in which the Mach number can approach 0.5. The recent models for simulating non-hydrostatic flows
have therefore used the compressible set of Navier-Stokes equations (e.g., Operational Multiscale Environment
model with Grid Adaptivity (OMEGA) model' and the National Center for Atmospheric Research’s (NCAR)
current state-of-the-art Weather Research and Forecasting (WRF) model*® use the fully compressible equation set).
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Traditionally, finite difference discretizations of centered schemes such as the Leapfrog scheme have been
favored for discretizing the atmospheric flow equation set. These types of schemes have large amounts of
dispersion errors (non-physical spurious oscillations), which can contaminate the numerical results (see Figure 1).
For synoptic scale models, it can be said that the computational efficiency of the Leapfrog scheme is more important
than the calculation of accurate phase speed. The scheme is formally second-order accurate in both space and time
and exhibits little numerical diffusion. At smaller spatial and temporal scales (non-hydrostatic meso-scale flows),
large gradients of velocities and other physical quantities can develop and the local accuracy becomes important.
The application of the Leapfrog scheme on smaller scales requires explicit time filtering for stability. The Asselin
time filter, which is often used, degrades the accuracy of the scheme in time". Furthermore, the scheme can
introduce false negatives in important scalar microphysical quantities. To avoid false negatives either positive
definite schemes® or Flux Corrected Transport (FCT)-type schemes® are sometimes used to advect scalar quantities.

leapfrog .

tracer
tracer
tracer
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Leapfrog Godunov MUSCL

Figure 1. Comparison of different advection algorithms in 1D. Monotone Upstream centered Scheme for
Conservation Laws* or MUSCL is the higher-order extension of the first-order Godunov scheme.

A number of studies have also been conducted in the past on the implementation of upwind schemes®® **. The
use of upwind schemes in operational models however has been limited. The upwind scheme is only first order
accurate and therefore highly diffusive. Higher-order extensions of the upwind scheme can be computationally
expensive’ compared to, e.g., the Leapfrog scheme and that is why atmospheric modelers have paid little attention
to its application for simulating atmospheric flows. In the past decades, there has been an immense increase in both
CPU speed and available memory and these advances in computer hardware are projected to keep improving in the
future. It is therefore not only feasible but also essential to explore the use of better numerical schemes including
higher-order upwind schemes for atmospheric modeling. In this study high-resolution Godunov-type methods are
explored for solving the non-linear equations arising in atmospheric flows. These finite volume discretizations are
conservative and have the ability to resolve regions of steep gradients accurately, thus avoiding dispersion or phase
errors in the solution.

Over the past two decades, Godunov-type methods'> have gained wide popularity in the scientific computing
community for solving the systems of hyperbolic conservation laws. Godunov’s unique approach to numerical
modeling of fluid flow is characterized by introducing physical reasoning in the development of the numerical
scheme*. The construction of the scheme itself is based upon the physical phenomenon described by the equation
sets. The scheme and its higher-order extensions have been used for high-speed flows/aerospace-related
simulations'"” **** and, for solving the shallow-water equations®. Ambitious attempts have been made to solve the
complex set of hyperbolic equations arising in relativistic astrophysics®>. Carpenter et al'® have applied the method
for atmospheric flows using an exact Riemann solver in conjunction with the Piecewise Parabolic Method''.
Carpenter et al'’ show the inherent strengths of Godunov-type methods by providing a comparison with the
Multidimensional Positive Definite Advection Transport Algorithm (MPDATA)*® and the Leapfrog schemes. The
important role Godunov-type methods can play in more accurately resolving atmospheric phenomena characterized
by steep gradients is also pointed out.

Fronts, for example, are typically associated with large horizontal temperature and wind gradients and vertical
wind shear. Strong convection in supercell thunderstorms can produce tornadoes, large hail, strong winds (in excess
of 50 ms™), lightning and flash floods’. Drylines are characterized by a strong moisture gradient in the planetary
boundary layer (e.g., in the Great Plains this gradient can be up to several degrees Celsius which is much larger than
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the climatological average of 0.04 °Ckm™ in the dewpoint temperature®). Drylines can trigger strong convective
activity and winds in excess of 50 miles per hour have been observed. In tornadoes (F5 category), winds between
125 and 140 ms™ have been observed. Hurricanes are yet another example of an atmospheric process which is
characterized by extreme gradients of velocities and potential temperature'®.

In recent years, different authors have explored the possible use of the Godunov-type schemes for atmospheric
modeling (e.g., see Ref. 19, 21, 26 and 33). The application for atmospheric modeling however has been limited
mostly to solving the atmospheric transport equation. In this study a high-resolution Godunov-type scheme for the
Euler equations governing atmospheric flows is developed and then extended to the Navier-Stokes equations. This
work differs from Carpenter et al’s'® work in the following aspects:

1) The conservative equation set for modeling compressible flows in the atmosphere is used, in which the
conservation of energy is in terms of entropy-density instead of entropy.

2) The equations and the solution methodology are in the Eulerian frame of reference rather than Lagrangian.

3) An approximate Riemann solver is employed instead of an exact solver to calculate the Godunov fluxes.
The computational cost of an exact Riemann solver can become prohibitive for simulations in three-
dimensions. The solution obtained by an approximate Riemann solver is comparable to the solution from
an exact solver — the computational overhead, however is greatly reduced.

4) The scheme is extended to the Navier-Stokes equations (the subgrid scale diffusion is treated as a source
term) and implemented on unstructured meshes.

Traditionally atmospheric modelers have used structured grids with uniform spatial spacing in the horizontal.
There are many advantages in using structured meshes — code-implementation and management is straightforward;
discretization schemes can easily be extended to higher orders of accuracy; there is minimal computational overhead
due to indirect accessing of data; and parallelization of the code is simple. The generation of structured meshes for
complex geometries however is non-trivial and for practical applications (e.g., in CFD) most of the design-cycle
time is spent on mesh-generation. The grid nesting technique is used to provide increased spatial resolution in the
horizontal without requiring a fine mesh throughout the entire domain. This technique involves the sequential
placement of multiple fine-scale meshes in the desired regions of the domain. Although the decision to spawn one
or more sub-meshes is typically subjective and manually directed at the beginning of the simulation, many
formulations have been developed to allow the sub-meshes to move with particular features in the flow, such as a
hurricane. One major problem with this technique, however, is the interaction among multiple nested meshes,
particularly the tendency for propagating waves to discontinuously change their speed upon passing from one nest to
the next and to reflect off the boundaries of each nested mesh.

The unstructured grid technique has been widely used in other scientific disciplines® *** for discretizing
computational domains with complex geometries. It is a relatively new method for atmospheric science community
that attempts to overcome the limitations of the structured grid technique. The primary benefit of the unstructured
grid technique over a conventional structured grid lies in its ability to accurately discretize complex topologies with
relative ease. Meshes for arbitrary surfaces and volumes in three dimensions can be generated. This capability is
essential for resolving complex terrain features and shoreline boundaries for meso-scale and urban-scale
atmospheric modeling. For flows on the urban and meso-scale, topographic forcing plays a dominant role in the
development of the flow and an accurate representation of the underlying terrain is crucial for maintaining the
fidelity of the numerical solution. A high degree of mesh refinement becomes critical in resolving locally driven
flows, e.g., in simulating the flow field generated by an urban heat island®.

In addition, computational efficiency can be achieved by providing variable and continuous resolution
throughout the computational domain, with a high mesh resolution only in regions of interest. This feature of
unstructured grid technique effectively removes the wave reflection problems that are common in grid-nesting
techniques. Bacon et al' used unstructured meshes with static and dynamic adaptation for atmospheric modeling for
the first time in the fully compressible and non-hydrostatic OMEGA model. The OMEGA model is based on
unstructured prisms and has been applied to many atmospheric problems and validated extensively” '°. A few other
studies on the use of unstructured meshes for atmospheric applications have also been conducted in recent years
(Ref. 5 and 14). With the exception of the OMEGA model, the atmospheric flow applications on unstructured grids
have been limited to solving the scalar transport equation.

II. Governing Equations

The basic equations of fluid flow comprise of a set of partial differential equations for the conservation of mass
(Continuity equation), the conservation of momentum, the conservation of energy and an equation of state to close
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the system. The 2D Navier-Stokes equations governing atmospheric flows (see Ref. 1, 24, 25 and 31), written in the
conservative form are as follows:

a_U+a_F+a_G:Q+D (1)
o ox Oy
Where,
p pu pv
2
+
7 el TR T e e o @)
pv puv pvi+p
po pud pvo

p is the density of fluid, u is the velocity component in the x-direction, v is the velocity component in the y-direction
and p is the pressure. If a parcel of air at temperature 7" and pressure p is subjected to an adiabatic compression or
expansion to a final pressure of 10° Pa, then its potential temperature,  is given by:

&
0= T(&J 3)
p
Q is the source term and D is the diffusive flux term defined by:
D=KVU (4)
In the momentum conservation equations, XK is the sub-grid scale eddy diffusivity coefficient of momentum (=

K,). In the conservation of energy equation, the Laplacian of potential temperature is multiplied by the eddy
diffusivity coefficient of heat (= K},). For the sake of simplicity, the turbulent Prandtl number, Pr is set to unity:

The source term can be complex for atmospheric processes, and apart from body forces, may include terms for
the heat sinks and sources produced due to the diurnal cycle of Earth, as well as microphysical processes of cloud
formations and dissipations. For the purpose of this study, a simplified source term will be used. Atmosphere is
assumed to be dry and the only source term is the gravitational force acting in the vertical direction. The system is
closed by an equation of state for pressure,

p=C, po "’ (%)
Where Cy is a constant given by:
R"/
Co = p(l:dd/C (6)

In the above relations, y is the ratio of specific heats (= C,/C, = 1.4), R; is the gas constant for dry air (= 287 J K
"kg™), po is the base state pressure (= 10° Pa). C,(=1004 1] K'kg" and C, (=717 J K" kg) are the specific heats
of air at constant pressure and volume respectively.

The Navier-Stokes equations contain both the advection and turbulent diffusion terms. The non-linearity due to
the advective term and the parameterization of eddy diffusivity for the sub-grid scale diffusion, are the two main
challenges in finding the numerical solution for these equations. In the current study, Smagorinsky’s method’” is
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used for parameterizing the eddy viscosity. In the Smagorinsky turbulence closure, the sub-grid scale diffusion is
parameterized in terms of the deformation tensor, D; ;:

ou 5
p =0t O 50 Oy

=t L @
boox, ox, 3, 0x

For atmospheric flow simulations, Lilly2 5, related the eddy viscosity coefficient, K, to the total deformation in
terms of the Richardson number, Ri:

€D - Ry if Ri<025

K,=y .2 (®)
0 otherwise
Total deformation rate Def'is defined as:
1

Do =13 ¥0; o)

The Richardson number Ri is defined as:

a6

Ri= e§ P (10)

2
ou
o)
The gravitational force, g is acting in the y-direction. The value of the Smagorinsky constant c is taken as 0.28.
In two dimensions, Eq. (9) can be expanded as:

Def* = Qu_ov + 6_u+@ (11)
ox Oy oy Ox
Where, u_ov is the stretching deformation and u + v is the shearing deformation.
ox 0oy oy Ox

III. Numerical Scheme

In the absence of turbulent diffusion, the Coriolis effect, body forces and other sink/source terms, the Navier-
Stokes equations reduce to the well-known set of Euler equations. The 1D Euler equations in the conservative form
for an adiabatic atmosphere can be written as:

WLy, (12)
ot Ox
Where U is the vector of conserved variables:
u, p
U=|u,|=|pul, (13)
u, po
And F is the flux vector,
5
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S pu
=\ f,|=|pu’+p (14)
/s pub

The system is closed by an equation of state for pressure, Egs. (5)-(6). The conservation laws in Egs. (12)-(14) can
be written in the discrete form as:

U U”+£{F +F } (15)
Ax| 3 e

bounded within a finite domain, 0 < x < L, with appropriate initial and boundary conditions. Then, the Godunov
flux is defined as,

F=FU ,(0) (16)

2

where, U | (0) is the exact or approximate solution of the Riemann problem.
H>E

Godunov’s method assumes piecewise constant data at cell centers. The Riemann problem is solved at each cell
interface and the numerical flux is constructed from it. Thus, the global solution is a set of solutions of the local
Riemann problems at each cell boundary (Figure 2), which is then evolved in time.

R

L\/ L\/ \ 7.

i+3

Figure 2. Piecewise constant data states within the computational cells. The discontinuities at cell boundaries
form a set of local Riemann problems.

A. The Harten-Lax-van Leer-Contact Approximate Riemann Solver

The approximate Riemann solver Harten-Lax-van Leer-Contact (HLLC) is an extension of the HLL (Harten,
Lax, and van Leer) solver by Toro*”*'. In the original HLL Riemann approximation, the presence of contact
discontinuities is neglected, which can give errors in the presence of shears within the flow. In Toro’s extension
(HLLC), the contact and shear waves are restored in the solution of the Riemann problem and it has the following
three properties™:

1)  Ability to resolve contact discontinuities and shear waves.

2) Positivity preservation of scalar quantities.

3) Enforcement of the entropy condition.
The solver has been successfully implemented with both explicit and implicit time-marching schemes and used for
calculations of Euler as well as the Navier-Stokes equations’. The detailed derivation of the HLLC flux is given in
Toro™*'. Here, the adaptation of the solver for Euler equations governing an adiabatic atmosphere is given. The

flux at cell interface is defined as:

F, if §,>0
FHIC FL:: lf SL <0< S, (17)
F;, if §8.<0<S,
F,, if S§,<0
6
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where, S;, Sv and Sy are the signal velocities associated with the three waves in the solution of the Riemann
problem. F; and Fj flux vectors are given by:

(pu), (pu),
F, =FU,)=|(pu’), +p, |, F,=FU,)=|(pu’), +p, (18)
(p9), (PO),

The subscripts L and R denote the data states to the left and right of an interface (cell edge). The fluxes in the
starred region are defined by:

S.p,
F =FU,)=|S.(pu), +p, (19)
S.(p0);
and,
S.py
F,=FU,)=|S.(pu), + p, (20)
S.(p0);
where,
p: 1 (SL _uL)pL
U: = (pu)*L = S _S (SL _uL)(pu)L +(p: _pL) (21)
(pO); L (S, —u,)(pB),
and,
p:e 1 (SR _uR)pR
U; = (pu):e = S _S (SR _uR)(pu)R +(p1*e _pR) (22)
(PO); o (Se —u)(PpO),
p* and p*; are given by:
p::pL+pL(SL_uL)(S*_uL)5 p;:pk+pR(SR _uR)(S*_uR) (23)

B. Calculation of Signal Velocities
The minimum and maximum signal velocities present in the solution of the Riemann problem can be estimated
directly from the wave speeds, S, and Sg:

S, =u, —a, S, =u, +a, (24)

The middle wave speed, S+, was calculated using Batten’s formulation’, by setting p*, = p*z:

_ pRuR(SR_uR)_pLuL(SL_uL)+pL_pR (25)

S.
pR(SR _uk)_ pL(SL _uL)

The subscripts L and R denote the data states on the left and right of a cell interface respectively.
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C. Time-Marching
A four-stage explicit Runge-Kutta time integration scheme (Jameson et al*) is implemented to achieve higher-
order accuracy in time. The scheme has relatively small memory requirements, is easy to implement and has been
successfully used for obtaining both steady and unsteady solutions of the Euler as well as Navier-Stokes equations.
Let,

oUu
R ~— 26
T (26)
Then the four-stage Runge-Kutta time-marching scheme can be written as:
U =u

U =U" —a,AtR"”

U =U" -o,AR"
27)

Ui(3) — Ui(O) _(I}AtRi(Z)
Ui(4) — Ui(O) —(14AtRi(3)
Ul1+l — U(4)

Where, a; = 1/4, a, = 1/3, a3 = 1/2 and o, = 1, are the Runge-Kutta constants. During the time integration, the local
Riemann solution on one interface should not be allowed to interfere with the Riemann solution on another
interface. If the interference of waves occurs then, the solution of the Riemann problem can no longer be considered
local. This forms the basis of the Courant restriction on the Godunov method. The time step is calculated by
finding the maximum wave speed in each cell:

Ar=CFL— 2 (28)
abs(u) +a

D. Solver Algorithm
The solution algorithm for constructing Godunov-type schemes via the HLLC Riemann solver can be
summarized as follows:
1)  Given the left and the right data states across each cell interface, calculate the signal velocities, St S+, and
Sk by Egs. (24)-(25).
2)  Construct the Godunov flux obtained from the HLLC approximate Riemann solver using Egs. (17)-(23).
3) Evolve the set of conservative variables in time using Egs. (26)-(27) with the time step restricted by Eq.
(28).

E. Implementation on Unstructured Meshes

The solver is implemented on unstructured meshes in two-dimensions. The convective/advective fluxes are
calculated by summing all the incoming and outgoing fluxes through each face of the control volume. Eq. (1)-(2)
can be written in the integral form as:

%lU dQ = —f (F,G).n dT (29)

Where, n is the unit normal pointing out of the control surface I" of the control volume Q. Figure 3 shows the cell-
centered control volume, (2 with each of its control surfaces and the unit normals pointing outwards from the control
surfaces. Eq. (29) can be approximated directly:

v, ‘% £ (F.G) s =0 (30)

faces
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Figure 3. Cell-centered control volume Q, and its control surfaces, I, The unit normals »n;, should always
point outwards from the control volume.

Where V., is the volume of the control volume (area of the triangle in the case of the two-dimensional triangular
mesh), u.; is the cell-averaged value of u at cell center and s is the control surface area (edge lengths of the triangle
in case of the two-dimensional mesh). The calculation of fluxes using Godunov’s method in conjunction with the
HLLC Riemann solver was described in detail in previous sections. For the unstructured mesh, the implementation
of the method is straightforward. The flux across each edge of the cell is calculated using Godunov’s method. The
values on either side of a cell edge form the initial conditions for the Riemann problem. The solution is marched in
time within the multi-stage Runge-Kutta time marching scheme. In a loop over edges the values of cells on either
side of the edge are used to calculate the fluxes. Once the fluxes have been calculated, they are added to the cell
centered value in a loop over cells. For the second-order calculation gradient-limited extrapolated values are used in
the Riemann solver instead of cell averages. Both the Green-Gauss and the Linear Least-Squares gradient
reconstruction” techniques have been implemented to extend the spatial accuracy of scheme to higher-order. The
scheme is made TVD'” with the help of slope limiters’. The Laplacian operator is calculated using the method
suggested by Holmes and Connell'®,

IV. Results

A. Doswell’s Frontogenesis

The simulation of Doswell’s frontogenesis problem (Doswell'?; Suratanakavikul and Marquis™) is presented in
this section. Doswell’s idealized model describes the interaction of a non-divergent vortex with an initially straight
frontal zone. An exact solution is readily available for this case, which makes it ideal for a quantitative as well as
qualitative validation of a numerical scheme. The flow field was defined as follows:

- =l

u(ey)=-2 Lo -

L D

where, r is the distance from any given point to the origin of the coordinate system, f,,,. = 0.385 is the maximum
tangential velocity and f; is given by:

_ tanh(r)

" cosh?(r) (32)

The domain was bounded within x:[-4,4] and y:[-4,4]. The simulation was run for ¢ = 4 units. The evolution of
tracer field in time ¢, is given by the exact solution:
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ﬂx%0=—mM{§wﬂfﬂ—§MMfﬁﬂ (33)

where, [ = L/ . The initial tracer field can be obtained from Eq. (33) by setting ¢ = 0:
r

max

q(x,,0)= —tanh(%) (34)

Figure 4 shows the initial conditions for the Doswell Test and a comparison between the exact and the numerical
solution is given in Figure 5. In addition several simulations were conducted to compare solutions on different types
of meshes using different gradient-reconstruction techniques. The error in solution was defined as:

nelem
JZMMM@ﬂ—%M%ﬂZ
1

rms error = (35)
nelem

Figure 6 shows the computed results for time = 4 units on different meshes. Only a zoomed view of the mesh
center is shown in the figure. Mesh 1 consists of right angle triangles; Mesh 2 is a standard unstructured mesh in
which an effort has been made to ensure good quality of triangles. Mesh 3 is similar to Mesh 2 except that
smoothing is not performed. Mesh 3 is the worst of the three in terms of quality. The error in solution compared to
the exact solution is plotted in Figure 7. The first-order solution on Mesh 2 is also shown for comparison. Although
the error in the higher-order solution is low for all three meshes, the differences in accuracy due to mesh quality and
the type of reconstruction technique used are clearly demonstrated. Mesh 2 (best quality mesh) performs much
better than the other two meshes and the Linear Least-Squares technique gives more accurate results than the Green-
Gauss reconstruction technique. It is interesting to note that the Green-Gauss for Mesh 1 gives the worst results.
This is due to the fact that Green-Gauss technique is second-order accurate only for equilateral triangles and Mesh 1
comprises of only right angle triangles.

A convergence study was performed to formally determine the accuracy of the high-resolution MUSCL scheme.
The scheme was also compared with the Leapfrog and the Lax-Wendroff schemes. For consistency, the time
marching in the MUSCL comprised of the 2-stage Runge-Kutta scheme. The comparison is shown in Figure 8 (left
panel). The MUSCL scheme has lower RMS error than both the Leapfrog and the Lax-Wendroff schemes at
different mesh resolutions. The L, error is plotted in Figure 8 (right panel). A maximum slope of 1.67 (Figure 8-
right panel) on the log-log plot indicates that the higher-order scheme is not formally second-order accurate. This
impression can be misleading. In the presence of discontinuities TVD schemes revert to first-order locally, which
can degrade the overall order of accuracy for the scheme and not necessarily the accuracy of the scheme itself. It
has been shown that even in the absence of discontinuities, for calculating smooth solutions, the TVD schemes do
not formally show a convergence rate of 2. This is due to the fact that limiters clip local extremas to preserve
monotonicity. Venkatakrishnan® reports an order of accuracy of 1.65 for various monotonic schemes (for solving
the linear scalar advection equation) which are formally second-order accurate.

Figure 4. Doswell’s Frontogenesis. Initial frontal zone (left) and the vortex defining the flow field (right).
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X Time = 4.0000 X Time = 4.0000

Figure 5. Doswell’s Frontogenesis. Exact solution of the tracer field at time = 4 units (left) and the
corresponding simulation result viae MUSCL (right).
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Figure 6. Higher-order solution on Mesh 1 (top left), Mesh 2 (top right), Mesh 3 (bottom left) and first-order
solution on Mesh 2 (bottom right).
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scheme converges at a rate of 1.67 which is almost twice the rate of the first-order Godunov scheme.
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B. Convection in Neutral Atmosphere

Simulation of a buoyant thermal is described in this section. The set of Navier-Stokes equations in two
dimensions was solved for this problem. Model was initialized by introducing a warm bubble with a diameter of
500 m and a constant potential temperature of 0.5 degrees higher than the surrounding environment (neutral
atmosphere in hydrostatic balance with a uniform potential temperature of 300 K). A 1km x lkm domain was
defined for the simulation. The pressure was re-adjusted for hydrostatic equilibrium after the introduction of the
thermal. The variables were first initialized on a structured grid and then interpolated to the unstructured mesh using
bilinear interpolation. It should be noted that initializing a perfect hydrostatic balance on an unstructured mesh is
non-trivial and the interpolation from the structured grid to the unstructured grid introduces errors (i.e., hydrostatic
imbalances in the initial state of the atmosphere) in the initial conditions. All domain boundaries were treated as
solid walls. The unstructured triangular mesh consisted of 39386 triangular elements with edge lengths varying
from 3.5 mto 12.4 m.

Shear is generated due to gradients in the flow normal to its direction and often results in instabilities. In
stratified fluids (e.g., the atmosphere) the instabilities due to shear are damped out by the stratification. The Miles
theorem predicts the transition from stable to unstable flow and the onset of the Kelvin-Helmholtz instability for low
Richardson numbers (Ri < 0.25). Usually a high Richardson number implies stability and instabilities in flow are
expected at low Richardson numbers. The Kelvin-Helmholtz type of instability is common in the atmosphere and
has been observed in billow clouds. The breaking of waves in the Kelvin-Helmholtz instability can generate the
clear air turbulence (CAT) in the atmosphere.

The objective of this model validation run was to simulate the onset of the Kelvin-Helmholtz type of instability
in the atmosphere. In the absence of an analytical solution, the test can evaluate the scheme only in qualitative
terms. This evaluation however, provides valuable information on the scheme’s ability to simulate the fundamentals
of atmospheric thermodynamics and dynamics. Buoyant thermals are highly nonlinear phenomena and therefore,
the detailed structure of the evolving thermal is dependent on the type of model formulation itself'* (i.e., the
equation set used — compressible, quasi-compressible, anelastic, etc.). Nonetheless, there are certain features, which
are expected in the resulting flow field. The introduction of the thermal in the domain generates acceleration in the
center of the bubble accompanied by downdrafts on the either side of the bubble. As the buoyant thermal rises, a
shear layer is developed at the lateral edges of the thermal. Initially the atmosphere is strongly stratified which
damps out the onset of flow instabilities, but as the thermal rises, the weakening of stratification at the edge of the
thermal triggers the onset of the instability. Figures 9-11 show the time evolution of potential temperature gradient,
shear, the Richardson number (scaled from —0.26 to 0.26; the values greater than 0.26 are set to zero) and potential
temperature. The generation of shear layer and weakening of stratification resulting in the Kelvin-Helmholtz type of
instability can be seen in the figures. The vectors in the figures represent only the flow direction.

V. Conclusion

This work has opened up the door for future use of high-resolution Godunov-type methods for atmospheric flow
simulations on unstructured meshes. The scheme shows promise in simulating flows characterized by steep
gradients on the meso- micro- and urban-scales. The use of unstructured grids provides the ability to simulate the
complex, multi-scale atmospheric flows in a computationally efficient manner and solution-adaptive techniques can
easily be implemented. However, there is much room for improvement. For example, better CPU performance
provided by implementing an implicit time-marching scheme (Luo, et al’’; Sharov, et al’*) can further increase the
robustness of the flow solver. Inclusion of more physics (microphysics, radiation schemes and surface layer
physics) is needed for simulating realistic flows. The role of various limiters (Venkatakrishnan*®) and especially
multidimensional limiters (Hubbard™) needs to be explored.
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Appendix

Godunov’s method and its higher-order extensions have been designed for hyperbolic conservation laws. It is
shown that the set of one-dimensional Euler equations governing the atmospheric flow are hyperbolic and thus an
attempt can be made to apply the family of high-resolution numerical methods, which have been developed
specifically for solving hyperbolic conservation laws. The Euler equations are written in a quasi-linear form,

U + AU, =0 (A.1)

The subscripts ¢ and x denote derivatives in time and space respectively, and A(U) is the Jacobian matrix defined as,

o, o, o]

AU) = 9 % T (A.2)
Ou, Ou, Ou,
o, of. 9.

The Jacobian matrix can be found by expressing the components of the flux vector F in terms of the components of
the U vector of conserved variables:

FU) =2 +Cu (A.3)

After some algebraic manipulations, the matrix in Eq. (A.2) simplifies to:

0 1 0
AU)=|-u’> 2u a’/0 (A4
-ub 0 u

where, a is the speed of sound.

Proposition 1: The one-dimensional Euler equations governing the atmospheric flows are hyperbolic.
Proof. The eigenvalues of the Jacobian matrix A(U) are found by setting,

|4U)-M|=0 (A.5)

Where, A; are the eigenvalues and I is the identity matrix. The solution of the resulting polynomial gives the
following eigenvalues:

u—a
A= u (A.6)
u+a
Since all eigenvalues are real, the system is hyperbolic.
17
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Proposition 2: The K’ characteristic field is linearly degenerate and the K' and K’ characteristic fields are
genuinely non-linear.
The right eigenvectors of the system can be derived by solving for:

K=k k, k' (A7)
such that,
AK =AK (A.8)
The right eigenvectors of the system are:
1 1 1
K'=\u—al; K> =|ul|; K'=\u+a]. (A.9)
0 0 0
Proof. Since,
VL U)-K'#0; VL, U)-K?=0; VL U)-K* #0 (A.10)

It follows that the K’ characteristic field is linearly degenerate which implies that the wave associated with it is a
contact discontinuity. Whereas, the genuinely non-linear K' and K’ fields will have waves, which can either be
rarefactions (smooth waves) or shocks (discontinuities).
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