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1 INTRODUCTION

In recent years there has been a growing interest in
the use of unstructured adaptive grids for modeling
atmospheric transport and diffusion problems (e.g.,
Ahmad et al. 2005, Bacon et al. 2000). The
unstructured grids provide the ability to discretize
complex computational domains with relative ease. The
capability to resolve the inherently multi-scale nature of
atmospheric flows in a computationally efficient manner
(via static or dynamic grid adaptation) can also be
achieved. In this paper the application of solution-
adaptive technique (dynamic grid adaptation) to
Eulerian transport is presented. Adaptation criteria are
discussed and the improvement in computational speed
is demonstrated. A decrease in computational
resources while maintaining the accuracy of the solution
has obvious benefits for responding to emergency-
response scenarios.

The unstructured grid technique has been widely
used in other scientific disciplines for discretizing
computational domains with complex geometries
(Léhner 1987; Baum and Loéhner 1989; Lohner 2001).
This capability is essential for resolving complex terrain
features and shoreline boundaries for mesoscale
(Bacon et al. 2000; Boybeyi, et al. 2001) and urban-
scale atmospheric modeling (Camelli et al. 2004; Hanna
et al. 2002). For flows on the urban and the mesoscale,
topographic forcing plays a dominant role in the
development of the flow and an accurate representation
of the underlying terrain is crucial for maintaining the
fidelity of the numerical solution. A high degree of mesh
refinement becomes critical in resolving locally driven
flows, e.g., in simulating the flow field generated by an
urban heat island. In addition, computational efficiency
can be achieved by providing variable and continuous
resolution throughout the computational domain, with a
high mesh resolution only in regions of interest
(Gopalakrishnan et al. 2002; Sarma et al. 1999). This
feature of unstructured grid technique effectively
removes the wave reflection problems that are common
in grid-nesting techniques.
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In simulating Eulerian transport, the importance of
fine mesh resolution is well known (Sarma et al. 1999:
Behrens et al. 2000; Ghorai et al. 2000). Coarse mesh
resolution introduces excessive numerical diffusion into
the solution. The degradation in the solution can be
further amplified, if the advected tracers are also
chemically reactive. Limitations on computational
resources can prohibit the use of high mesh resolution
throughout the computational domain.  Unstructured
grid techniques can be used to minimize the
computational overhead while attempting to attain the
desirable accuracy in the solution.

2 NUMERICAL SCHEME

The 2D scalar transport equation can be written in
the conservative form as:

a_U+a_F+a_G:O (1)
o Ox Oy
where,
U=q, F=qu, G=gqv 2

q is the Eulerian tracer, u is the velocity component in
the x-direction and v is the velocity component in the y-
direction.

The scalar transport equation is solved using a
higher-order Godunov-type scheme (Godunov 1959;
van Leer 1979) on unstructured meshes in two-
dimensions. These finite volume discretizations are
conservative and have the ability to resolve regions of
steep gradients accurately, thus minimizing dispersion
or phase errors in the solution. Eq. (1)-(2) can be
written in the integral form as:

% [U dQ=—§(F,G).zi dT 3)

where, n is the unit normal pointing out of the control
surface I' of the control volume Q. Figure 1 shows the
cell-centered control volume, Q with each of its control
surfaces and the unit normals pointing outwards from
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the control surfaces.
directly:

Eqg. (3) can be approximated

V.. dit”” +>(F,G)-s=0 “

faces

where, Ve is the volume of the control volume (area of
the triangle in the case of the two-dimensional triangular
mesh), Ucen is the cell-averaged value of the conserved
quantity U at cell center and s is the control surface area
(edge lengths of the triangle in case of the two-
dimensional mesh).

Figure 1: Cell-centered control volume Q, and its
control surfaces, I'.. nj, are the unit normals.

The advective fluxes are calculated by summing all
the incoming and outgoing fluxes through each face of
the control volume. The flux across each edge of the
cell is calculated using Godunov’'s method (Godunov
1959). The values on either side of a cell edge form the
initial conditions for the Riemann problem. The solution
is marched in time within the multi-stage Runge-Kutta
explicit time marching scheme (Jameson et al. 1981).
In a loop over edges the values of cells on either side of
the edge are used to calculate the fluxes. Once the
fluxes have been calculated, they are added to the cell
centered value in a loop over cells. For the second-
order calculation gradient-limited extrapolated values
are used in the Riemann solver instead of cell averages
(van Leer 1979). Both the Green-Gauss and the Linear
Least-Squares gradient reconstruction (Barth and
Jesperson 1989) techniques have been implemented to
extend the spatial accuracy of scheme to higher-order.
The scheme is made TVD (Harten 1983) with the help
of slope limiters (Barth and Jesperson 1989; van Leer
1979). The methodology used for dynamically adapting
the mesh is described in Ahmad et al. (1998).

3 SOLUTION ADAPTATION

The basic idea behind adaptive mesh refinement is
to distribute the error equally over a computational
mesh. The regions where numerical error is large are
refined to provide better spatial accuracy. The adaptive
mesh refinement provides computational efficiency and
an attempt can be made to solve computationally
intractable problems. Two of the different strategies,
which, are commonly used are:

e  H-refinement: Cells are added in regions
where a higher degree of accuracy is
required (L6hner 1987).

e Re-meshing: The mesh is refined/coarsened
and then regenerated. The values from the
old mesh are interpolated to the new mesh.

In h-refinement the conservation of quantities is
easier to maintain during interpolation and
computational overhead is also smaller compared to re-
meshing (Léhner 2001).

If the exact solution is known then the error-
indicator can easily be defined in terms of relative error
or a similar quantity. In practice the exact solution is not
known a priori. The regions of large errors however
usually coincide with regions of sharp gradients. There
are various ways in which one can define the adaptation
criteria (Ahmad et al. 1998; Lohner 1987; Ghorai et al.
2000) depending on the problem. Ahmad et al. (1998)
tag cells for refinement based on a Gaussian function
around Lagrangian particles. The adaptation criteria
(error-indicator) proposed by Léhner (1987) is a function
of the Laplacian, first derivatives and differences.
Ghorai et al. (2002) have based their error-indicator on
the difference between the first and second-order
solutions. In the current study three simple error-
indicators were used — in the first, the error is based on
the gradient. The gradient is normalized by the
maximum gradient, which vyields a value of error-
indicator between 0 and 1. The user specifies a
threshold, based on which the cells and their neighbors
are tagged for refinement. The user also specifies the
maximum and minimum allowable edge lengths. In the
second, the maximum difference in adjacent cells is
calculated and again the cells are tagged for refinement
or coarsening based on a user-specified threshold.
Finally an error-indicator is defined based on the
difference in derivatives. This method yielded the best
results. The second criteria, exhibits some noise which
can result in extraneous regions of refinement. In using
different adaptation criteria (error indicators), some level
of user expertise is needed. Test runs can give the user
an idea of what the value of the threshold should be to
achieve the desired level of mesh refinement.

Smolarkiewicz flow and the Doswell’s problem were
simulated to test the implementation of the solution-
adaptation techniques.

3.1 Smolarkiewicz Flow

Smolarkiewicz's deformational flow (Smolarkiewicz
1982; Staniforth et al. 1987) is one of the standard tests
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for the evaluation of advection schemes (e.g., Sykes
and Henn 1995). The flow field is given by:

u(x, y) = Aksin kxsin ky Q)
v(x,y) = Akcoskxcosky (6)
47
k= ——
7 (7

where, A = 8 and L = 100 units (size of the domain was
set to 100x100 units). The radius of the tracer cone was
set to 15 units and the height of the cone was 1 unit.
The flow field consists of sets of symmetrical vortices.
Three simulations were conducted for the
Smolarkiewicz flow:

a. Coarse mesh consisted of 2488 cells.

b. Globally refined mesh consisted of 246498
cells.

c. Adaptive mesh consisted of 2488 cells
initially. The number of cells increased to
23360 by the end of the simulation. The
number of cells is an order-of-magnitude less
than the globally refined mesh.

Some of the mesh parameters and the timings for
different simulations (final time = 52.752s) are given in
Table 1 and the tracer fields for different meshes are
shown in Figures 2-4. All simulations were conducted
using a higher-order Godunov-type scheme within a 2-
stage explicit Runge-Kutta time marching scheme. A
CFL criteria of 0.9 was maintained in calculating the
time step. For the adaptive run the refinement cycle
was invoked every other iteration. The coarsening cycle
was turned off.

Table 1: Timings — Smolarkiewicz Flow

case edgemin edgemax time

fine 0.13 0.51 3192.60
coarse 1.59 4.66 1.35
adaptive 0.15 4.66 648.52

Figure 5 shows a comparison with Staniforth’s
analytical solution for tracer values at y = 50. The
Staniforth solution is computed numerically and requires
a sampling interval (0.00625 was used in Staniforth et
al. 1987). For the comparison shown in Figure 5, a
sampling interval of 0.1 was used. The results show
that the solution on the coarse mesh becomes too
diffusive and the representation of peak concentrations
is poor. The adaptive mesh on the other hand
reproduces comparable results to the globally refined
mesh at reduced computational cost. A further
reduction in timing may be achieved by invoking the
coarsening cycle and code optimization. It should be
noted that the speedup would probably be higher if the
number of tracer species is higher.

coarse

Figure 2: Smolarkiewicz's Deformational Flow. Solution
at time = 52.752 s. Coarse mesh.

fine

Figure 3: Smolarkiewicz's Deformational Flow. Solution
at time = 52.752 s. Fine mesh.

Figure 4: Smolarkiewicz's Deformational Flow. Solution
at time = 52.752 s. Adaptive mesh.
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Figure 5: Smolarkiewicz's Deformational Flow. Solution
at time = 52.752 s. The values between x = 25 and x =
50 are shown for y = 50. The sampling interval was set
to 0.1 for the analytical solution.

3.2 Doswell Test

The simulation of Doswell’'s cyclogenesis problem
(Doswell 1984) is presented in this section. Doswell’s
idealized model describes the interaction of a
nondivergent vortex with an initially straight frontal zone.
The flow field for the Doswell test can be defined as
follows:

R YU A [

u(x,y)=-
o == " o

where, r is the distance from any given point to the
origin of the coordinate system, fnax = 0.385 is the
maximum tangential velocity and f;is given by:

tanh(r
=) ©)
cosh”(r)
The initial tracer field is given by:
_ Y
q(x,y,0)=— tanh(gj (10)

where, § is the characteristic width of the front zone.
The value of 3 was set to 0.02 for a non-smooth
cyclogenesis. The domain was bounded within x:[-4,4]
and y:[-4,4], and the simulation was run for t = 4 units.
A refinement cycle was invoked every second iteration.
Figures 6 shows the initial conditions and Figures 7 and
8 show the results for simulation with no adaptation and
with adaptation respectively. By providing a high mesh
resolution in the region of high gradients, as the
simulation evolved, the sharp interface of the frontal
zone was maintained.

Figure 6: Doswell Test. Time =0 s. Initial conditions.

Figure 7: Doswell Test. Time = 4.0s. No adaptation.

Figure 8: Doswell Test. Time =4.0s. Adaptive run.
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4 CONCLUSIONS

Solution-adaptive simulations on unstructured grids
were presented. It was shown that the technique
improves the computational efficiency (5 times speedup
for the Smolarkiewicz flow) while maintaining the fidelity
of the solution. The scheme also shows promise in
resolving and tracking phenomenon characterized by
steep gradients at a relatively low computational cost.

Acknowledgement: Many thanks to Drs. Doug Henn
and lan Sykes for providing the analytical solution of the
deformational flow test.
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