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Abstract

The Lagrangian stochastic probability density function (PDF) model developed by Cassiani et al. [Atmos. Environ.

(2005) Part 1] is extended to the atmospheric convective boundary layer. The model is applied to simulate concentration

statistics and PDF generated by passive releases from point and line sources in the convective boundary layer. A

dynamical time-expandable grid is implemented, which optimises the computational resources required for dispersion

simulations in atmospheric flow. A parameterised formulation for the micromixing time scale in convective conditions

is derived. Model concentration statistics including mean field, fluctuations and concentration PDF are tested with four

water tank experiments.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Lagrangian stochastic (LS) models are an effective

modelling tool for the prediction of the mean concen-

tration field of passive scalars in the atmospheric

convective boundary layer (CBL). Recently, LS models

have been expanded to predict all moments of concen-

tration using a fluctuating plume approach (Luhar et al.,

2000; Cassiani and Giostra, 2002; Franzese, 2003) based

on parametric forms for the relative particle spread and

for the relative intensity of concentration fluctuations. A

different technique based on LS modelling coupled with

probability density function (PDF) methods and a

dynamical grid formulation was presented and tested
e front matter r 2004 Elsevier Ltd. All rights reserve
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in homogeneous turbulence and in the atmospheric

neutral boundary layer by Cassiani et al. (2005). The

PDF model still uses a parameterised relative spread

indirectly, but does not use relative concentration

fluctuations as an input. This paper describes an

application of this technique to the simulation of passive

scalar dispersion in the CBL.

The model uses the dynamical grid formulation to

predict concentration statistics and the full one-point

concentration PDF. The definition of the micromixing

time scale used in Cassiani et al. (2005) was adapted to

account for the turbulence characteristics and the

domain structure of the CBL. Luhar and Sawford

(2005) describe a similar application of PDF modelling

to the CBL using a fixed computational grid, sequential

simulation of particles, a mean concentration field pre-

computed by a preliminary release of marked particle

and a slightly different definition of the micromixing

time scale.
d.
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The present model can be extended to account for

chemical reactions with no additional closure assump-

tions. The inclusion of chemical reactions is straightfor-

ward because the model evolution equations for

velocity, position and concentration are solved in

parallel for all sampled particles. The model ability to

simulate the releases of reactive substances is a desirable

option because most of the chemical reactions involving

reactive contaminants take place in daytime, when

unstable conditions generated by convective turbulence

are a typical occurrence for low winds, with strong

inhomogeneous turbulence in the vertical direction.

The model equations and the turbulence input

statistics are described in Section 2. A standard LS

model (Luhar and Britter, 1989) has been used to model

the trajectories of the particles, while the evolution of

the concentration of each individual particle is governed

by an interaction by exchange with the conditional mean

(IECM) micromixing model (Fox, 1996). The turbulence

statistics input into the model have been selected fitting

the observations from the experiment of Deardorff and

Willis (1985); the same parameters have been used for all

simulations reported in this paper, including the

comparisons with the experiments of Willis and Dear-

dorff (1978), Deardorff and Willis (1984), Hibberd

(2000) and Weil et al. (2002).

In Section 3, a short discussion and a definition of the

dissipation time scale for CBL used by the IECM model

is presented. The dissipation time scale has been defined

as a function of relative particle spread and standard

deviation of relative velocity. Model simulation results

for point and line sources are reported in Section 4 along

with comparisons with the experiments. Limitations and

the potential future development of the model are

discussed in the conclusions.
2. Model equations

The set of stochastic differential equations describing

the evolution of velocity, position and concentration of

a particle is

dUi ¼ aiðX;U; tÞdt þ bijðX;U; tÞdzj ; (1)

dX i ¼ Ui dt; (2)

dC ¼ jðC;X;U; tÞdt; (3)

where the capital letters indicate quantities associated to

the particle (i.e. Lagrangian quantities). U is the particle

velocity vector, X is the particle position vector and C is

the concentration associated with the particle. dzj

indicates a vector of independent Wiener processes with

zero mean and variance dt (e.g., Gardiner, 1983). The

mean wind is assumed to be known; therefore we will

refer to the turbulent velocities as the velocity field,
where the principal direction 1 coincides with the mean

wind direction. Thus, the mean components of the

velocity vector u in the two transverse directions are

zero, and in these directions we do not need to

distinguish further between ui and ui � huii: For

instance, s2ui
¼ hu2i i for i ¼ 2; 3: The Taylor translation

hypothesis x ¼ huit is used to reduce the problem from

three to two dimensions. This is a good approximation

in the CBL since the mean wind is usually

1:2wnojhuijo6wn: When it is more convenient we will

use the classical meteorological notation ðx; y; zÞ ¼
ðx1; x2; x3Þ and ðu; v;wÞ ¼ ðu1; u2; u3Þ instead of the

indicial notation.

2.1. The lagrangian stochastic model for velocity and

position

The terms ai and bij in Eq. (1) jointly model the effect

of viscous stresses and pressure gradient on the

evolution of the joint velocity and concentration PDF.

The coefficient bijðX;U; tÞ is obtained by imposing

consistency with the Lagrangian structure function in

the inertial subrange, i.e. bij ¼ dijðC0�Þ
1=2; where C0 is

the Kolmogorov constant and � is the mean dissipation

of turbulent kinetic energy.

The coefficient aiðX;U; tÞ is obtained by ensuring the

fulfilment of the well-mixed condition (Thomson, 1987),

see also Cassiani et al. (2005). The two-dimensional

PDF of crosswind velocities is written as f u ¼ gvcw;
where g indicates a Gaussian function, i.e. gv ¼

exp½�v2=ð2s2vÞ

� ffiffiffiffiffiffiffiffiffiffi

2ps2v
p

; and cw is assumed to be the

sum of two Gaussians, i.e. cw ¼ Asgs þ Adgd (e.g.,

Baerentsen and Berkowicz, 1984). gs and gd are related

to the PDFs of updraft and downdraft velocity,

respectively, and As and Ad are related to the updraft

and downdraft area, respectively (Luhar and Britter,

1989).

With these definitions and assuming that sv is

homogeneous in the vertical direction the equation for

the horizontal crosswind velocity is simply

dV ¼ �
C0�

2s2v
V dt þ ðC0�Þ

1=2 dz: (4)

The particle vertical velocity W will be modelled

according to Luhar and Britter (1989), i.e.

dW ¼ aðz;W Þdt þ ðC0�Þ
1=2 dz3 (5)

with

aðz;W Þ ¼ ð2F� C0�QÞ=ð2cwÞ;

gs ¼ exp½�ðW � msÞ
2=ð2s2s Þ


� ffiffiffiffiffiffiffiffiffiffi
2ps2s

q
;

gd ¼ exp½�ðW þ mdÞ
2=ð2s2dÞ


� ffiffiffiffiffiffiffiffiffiffi
2ps2d

q
;
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Fig. 1. Dimensionless input turbulence statistics as a function

of the vertical coordinate scaled with the boundary layer

height h:
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where ms is the mean updraft velocity, md is the absolute

value of the mean downdraft velocity and s2s and s2d are
the updraft and downdraft variance, respectively.

Following Baerentsen and Berkowicz (1984), ss ¼ ms

and sd ¼ md with

ms ¼ s2w
�
ð2mdÞ;

md ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hw3i2 þ 8s6w

q
� hw3i

� ��
ð4s2wÞ;

As ¼ md=ðmd þ maÞ;

Ad ¼ ms=ðmd þ maÞ;

Q ¼ gsAsðW � msÞ=m2
s þ gdAdðW þ mdÞ=m2

d

and

F ¼ �
1

2
As

@ms

@z
þ ms

@As

@z

� �
erf

W � msffiffiffi
2

p
ms

� �

þ ms As
@ms

@z

W 2

m2
s

þ 1

� �
þ ms

@As

@z

� 	
gs

þ
1

2
Ad

@md

@z
þ md

@Ad

@z

� �
erf

W � mdffiffiffi
2

p
md

� �

þ md Ad
@md

@z

W 2

m2
d

þ 1

� �
þ md

@Ad

@z

� 	
gd:

For a crosswind line source, only Eq. (5) for the

vertical component of velocity is required.

Luhar and Britter (1989) showed that this model

correctly reproduces the mean field observed in Willis

and Deardorff (1976, 1978, and 1981) water tank

experiments. It is possible to use other LS models, such

as, for example, a model using the closure introduced in

Luhar et al. (1996), or the model described in Franzese

et al. (1999).

Perfect reflection of particle positions at the bound-

aries was used. The reflected velocities are randomly

extracted from the positive part of the updraft velocity

PDF and from the negative part of the downdraft

velocity PDF (gs and gd; respectively), depending on

which boundary is reflecting the particle. Simple testing

of this scheme (not reported here) showed negligible

errors in the simulated well-mixed distribution of

particles at large time. Once the computational domain

reaches the physical boundary the velocity skewness

goes to zero and perfect reflection for both position and

velocity is used. More refined boundary conditions in

non-Gaussian turbulence are discussed in Thomson and

Montgomery (1994); however, their implementation

may be laborious and computationally intensive when

an expanding domain is used (Cassiani et al., 2005).

2.1.1. Input turbulence statistics

The vertical profiles of the variance of the three

velocity components and of the energy dissipation are
parameterised fitting the data from the tank experiment

reported in Deardorff and Willis (1985):

s2w ¼ w2
n
f0:06þ ½ðz=hÞð1� 0:7z=hÞð1� z=hÞ
2=3g;

s2u ¼ w2
n
f0:24þ exp½�4ðz=h þ 0:29Þ
g;

s2v ¼ 0:2w2
n
;

� ¼ w3
n
½1:2� 1:05ðz=hÞ1=3
=h:

The third moment of the vertical velocity is the same

as the one used by Franzese et al. (1999): hw3i ¼

1:1w3
n
ðz=hÞð1� z=hÞ2: The above input profiles of

s2w
�

w2
n
;s2u

�
w2

n
; �h

�
w3

n
and hw3i=w3

n
are reported in

Fig. 1. This set of inputs was used in all our comparisons

with the Willis and Deardorff (1978), Deardorff and

Willis (1984), Hibberd (2000) and Weil et al. (2002)

experiments.

2.2. Micromixing model

The coefficient j in Eq. (3) is specified according to

the IECM model of Fox (1996)

dC

dt
¼

1

tm
ðC � hcjX;UiÞ; (6)

where hcjX;Ui is the ensemble mean concentration

conditioned on the particle position vector and on the

particle velocity vector. The dissipation time scale tm will

be defined in the next section. The accuracy of the

estimated ensemble mean for the location and velocity of
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the particles can be assessed based on the standard

criteria for Monte Carlo statistical methods and depends

on the number of sampled particles (Cassiani et al.,

2005).

The calculation of concentration statistics are based

on the dynamical time-expandable grid described in

Cassiani et al. (2005). The stochastic differential

equations for velocity (1) and position (2) are discretized

using a simple Euler scheme, whereas the IECM Eq. (3)

is discretized as

Cðt þ DtÞ ¼ CðtÞ � 1� exp �
1

tm
Dt

� �
 �
CðtÞ � hcjX;Uið Þ:

(7)
3. Definition of the dissipation time scale in a convective

boundary layer

The dissipation time scale tm in Eq. (6) is defined as

discussed in Cassiani et al. (2005), following the semi-

empirical formulation of Sawford (2004): tm ¼ msr=sur
at short and intermediate time from the release, where m
is an empirical constant to be evaluated, sr is the

instantaneous plume spread which is assumed as a

characteristic length scale of the scalar field and sur ¼
hu2r i

1=2 is the root mean square of the relative velocity

fluctuations. ur indicates the difference between a

component of the particle turbulent velocity and the

corresponding component of the velocity of the instan-

taneous centre of mass of the plume. Thus, s2ur
represents the fraction of turbulent energy contributing

to the instantaneous relative plume spread, and is

modelled according to Franzese (2003):

s2ur ¼ s2
sr
L

� 
2=3
; (8)

where s2 is assumed to be the average of the variances of
the three components of velocity, i.e. s2 ¼ ðs2u þ s2v þ
s2wÞ=3 and L is a characteristic length scale of the most

energetic eddies which is assumed to be equal to the

CBL height, i.e. L ¼ h: The plume relative spread is

parameterised as

s2r ¼
d2
r

1þ ðd2
r � s20Þ

�
ðs20 þ 2s2TLtÞ

; (9)

where d2
r is the inertial range variance of the one-

dimensional distribution of particles around the instan-

taneous centre of mass of the plume, i.e. d2
r ¼ Cr�ðt0 þ

tÞ3 , with t0 ¼ ½s20=ðCr�Þ

1=3 (Franzese, 2003). Cr ¼ 0:3 as

in Cassiani et al. (2005), in agreement with the

experimental results of Hibberd (2000) as reported in

Luhar et al. (2000). Eq. (9) ensures that sr is consistent
with the inertial range formulation and tends to the

Taylor diffusion limit at large time, i.e. sr ¼ s0 as t ! 0;
sr ¼ dr for ts � t � TL; and sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2TLt

p
for t � TL;

sr is constrained to not exceed the boundary layer

height. Because the turbulence is not homogeneous in

the vertical direction, s2 and � are local quantities which
depend on the particle vertical position. Therefore the

numerical procedure described in Cassiani et al. (2005) is

used to evaluate sr for each particle and the value of tm
for each cell. The calculated tm depends on both the

downwind distance from the source and the vertical

position of the particle. The constant m was determined

from the best fit of model results to the thank data. In

the simulations of a crosswind line source we used m ¼

0:8; for a continuous point source m ¼ 0:7:
4. Comparisons with the experiments

The model was tested with the data from four

experiments of dispersion in the CBL: Willis and

Deardorff (1978), Deardorff and Willis (1984), Hibberd

(2000) and Weil et al. (2002).

All of the above are water tank experiments. In the

Hibberd (2000) experiments the convective turbulence

was simulated by saline convection (Hibberd and

Sawford, 1994); in the other experiments the turbulence

was driven by heat generated convection.

The crosswind-integrated mean concentration field

simulated by the model for elevated sources is compared

with the observations from the experiments of Willis and

Deardorff (1978) for a source height zs ¼ 0:24 h; and
Hibberd (2000) for zs ¼ 0:25 h: The experiments were

conducted for a continuous release from a crosswind line

source, with zero horizontal and vertical momentum.

The Taylor translation hypothesis is used to trans-

form the time into downwind distance from the source,

i.e. x ¼ huit where hui is the mean wind speed which is

assumed to be constant along the boundary layer

vertical direction. The simulation is thus reduced to

one dimension. The initial spread of the simulated plume

was taken equal to the source diameter in the Hibberd

(2000) experiment, i.e. s0 ¼ 6:7� 10�3 h: However, s0
has a small effect on the simulated mean concentration

field.

Fig. 2 shows the contour lines of the crosswind-

integrated mean concentration hciy ¼
R1

�1
hcidy scaled

with the crosswind-integrated well-mixed concentration.

Contour lines are plotted as a function of the

dimensionless downwind distance, X ¼ wnx=ðhuihÞ; and
of the dimensionless vertical coordinate z/h. Because the

two experiments show very similar mean concentration

fields, we report only the simulation for zs ¼ 0:25 h: The
simulated contour lines capture the essential features of

the field with a good agreement especially on the lower

half of the domain. The agreement worsens in the upper

half of the domain, especially near the upper boundary.
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Fig. 2. Contours of dimensionless crosswind mean concentra-

tion as function of dimensionless vertical coordinate z=h and

dimensionless downwind distance X : (a) Willis and Deardorff

(1978) experiment; (b) model simulation; (c) Hibberd (2000)

experiment.

Fig. 3. Dimensionless crosswind ground level concentration

GLCy measured (open symbols) and modelled (lines). X is the

dimensionless downwind distance and zs the source elevation.
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This is due to the simple reflection conditions used in the

model, where the upper boundary is assumed to be an

idealised reflective barrier. In the experiments, the upper

boundary is a region of low permeability that extends

from about 0.9 h to about 1.2 h, and the exchange of

fluid through the boundary creates the observed

gradient of mean concentration near the top. In fact,

this phenomenon is a more realistic representation of the

exchange processes at the top of the atmospheric

boundary layer than the modelled perfect reflection.

The measured and modelled crosswind-integrated

ground level concentration scaled by the well-mixed

concentration,GLCy; are shown in Fig. 3. GLCy

measured in Willis and Deardorff (1978), in Deardorff

and Willis (1984); zs ¼ 0:22 h and in Hibberd (2000), are
quite different, showing the GLCy sensitivity to the

details of the experiment. The ratio of stack exit velocity

to mean wind speed in the Deardorff and Willis (1984)

non-buoyant plume experiment was about five. Because

of the plume initial momentum, the release can be

regarded as a jet in a convective turbulent cross flow.

However, an effective source height was estimated by

Luhar et al. (2000) to be approximately 0:22 h; which is

the value we used in our simulation. This value is

consistent with the downwind location of the maximum

GLCy measured in this experiment, which is approxi-

mately the same as in Willis and Deardorff (1978) and

Hibberd (2000) experiments. The simulated max GLCy

show a fair overall agreement with the observations. The

location of the maximum at X � 0:6 and the presence of
a local minimum at X � 2 in all the experiments are

captured by the model with a good approximation.

The intensity of concentration fluctuations sc=hci
simulated by the model for a release height of 0.25 h is

compared with the observations from the Hibberd

(2000) experiments in Fig. 4. Fig. 4(a) shows sc=hci as
a function of X at the vertical position of the plume

centre of mass; Fig. 4(b) reports the observed and

measured ground level sc=hci: The shape of the observed
curve in Fig. 4(a) is well reproduced by the model,

although the model peak occurs at X � 0:2 and the

observed one at X � 0:35: In general there is an

overestimation of about 25% for Xo2: The simulation
matches the ground level observations in Fig. 4(b) with a

minimal error up to X � 3: In both cases the observed

sc=hci is constant for X43; whereas the model sc=hci
tends to zero at large distance from the source.

The underestimation of sc=hci at large distance is

systematic and can also be observed in Fig. 5, which

shows the contours of sc=hci as a function of the

dimensionless height and downwind distance. The

simulated and observed fields are plotted in Figs. 5(a)
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Fig. 4. Intensity of concentration sc=hci as a function of the

dimensionless downwind distance X ; measured by Hibberd

(2000) (symbols) and modelled (lines); (a) sc=hci at the plume
centre of mass; (b) sc=hci at the ground level (0:06 h).

Fig. 5. Contours of intensity of concentration fluctuations

sc=hci for a crosswind line source at zs ¼ 0:25 h: (a) Model

simulation; (b) Hibberd (2000) measurements. X is the

dimensionless distance and h the CBL height.

Fig. 6. Modelled and measured ground level concentration

fluctuation intensity sc=hci from a point source at elevation

zs ¼ 0:22 h as a function of the dimensionless downwind

distance. The symbol } refers to measured data averaged in

the horizontal range 0:5syojyjosy; J refers to data averaged

in the range jyjo0:5sy: The model data are averaged over

jyjosy:
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and (b), respectively. The simulation is in very good

agreement with the observations up to X � 2 and z=h �

0:8: However, the experiment shows a constant level of

fluctuations at all elevations for X42:5 whereas the

model fluctuations decay to zero. This discrepancy,

which was already observed in Fig. 4, is likely to be due

to the flux of fluid through the top of the experimental

boundary layer as shown in Fig. 2(c). The fluid entering

the boundary layer from the top is distributed across the

entire vertical domain by the convective turbulence, thus

generating fluctuations of concentration sc: In addition,

the mean concentration hci is also reduced by the intake

of fluid. This is probably the only mechanism by which a

crosswind line source in a bounded vertical domain can

maintain a constant level of fluctuation intensity as

clearly observed in Figs. 4 and 5.

The exchange of fluid through the boundary layer top

is neglected by our model because of the reflective

boundary conditions used in our simulations. More

sophisticated boundary conditions such as those sug-

gested by Thomson et al. (1997) should improve the

modelling of the upper part of the domain, at the price

of additional complexity in the algorithms and slower

performances.

Fig. 6 shows the near surface sc=hci data from the

continuous point source release experiments of Dear-
dorff and Willis (1984) and Weil et al. (2002) along with

our two-dimensional simulation results. The Weil et al.

(2002) experiment was intentionally similar to Deardorff

and Willis (1984), with the same elevation of release and
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stack exit velocity. The source diameter in these

experiments was 0:0086 h; which was assumed as the

initial spread s0 in the simulations.

The data from the Deardorff and Willis (1984)

experiment in Fig. 6 were measured at z ¼ 0:08 h and

are reported as open symbols. The open diamonds refer

to the observations averaged over 0:5syojyjosy; the
open circles are the data averaged over jyjo0:5sy: The
data of Weil et al. (2002) were measured at z ¼ 0:05
along the plume centreline and are reported as solid

triangles. The line represents the simulation results at

z ¼ 0:08 h averaged over jyjosy: There is an excellent

agreement between simulation and experiments. The

maximum in the fluctuation intensity at about X ¼ 1:4
in the data of Deardorff and Willis was explained and

reproduced by a fluctuating plume model in Franzese

(2003). The local maximum is due to the raising of the

mean plume centreline, in that the fluctuation intensity

increases towards the edge of the plume. The effect is

partially counterbalanced by the decay of fluctuations

with distance. The present model does not describe this

maximum and neither do the data of Weil et al. (2002).

This suggests that the balance between plume raising

and fluctuation decay is sensitive to experimental factors

such as type of generation of convection, Reynolds

number, distance and permeability of upper and lateral

boundaries, and turbulence profiles.

The experiments do not show a constant level of

fluctuations at large distance as in the line source

experiments of Hibberd (2000) in Figs. 4 and 5. This is

probably due to the contribution of the horizontal

crosswind component of turbulence to the fluctuation

intensity, which is missing in the line source experiments.
Fig. 7. Measured and modelled cumulative distribution func-

tion (CDF) of concentration at two downwind distances from

the source.
This contribution tends to zero as the distance increases,

causing the steady decay of sc=hci shown in Fig. 6.

However, when the fluctuations generated by the

horizontal turbulence become negligible compared to

the fluctuations generated by the fluid entrained from

the top, we expect to observe a constant level of sc=hci:
The model is able to calculate the full PDF of

concentration f ðcÞ: The predicted cumulative distribu-

tion function is compared to the measurements of Weil

et al. (2002) in Fig. 7. The agreement is quite good

considering the complexity of the non-homogeneous and

non-Gaussian turbulence in the CBL. In Fig. 8 the

predicted f ðcÞ are compared with the gamma distribu-

tions that Weil et al. (2002) found to correctly fit their

data, accordingly to the results of Yee and Chan (1997).

The slight discrepancies between the predictions and

the measurements cannot possibly be related to a single

model component. An important factor is certainly the
Fig. 8. Probability density function of concentration f ðcÞ

predicted by the model along with the best fit Gamma

distribution to the data of Weil et al.(2002).
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IECM micromixing modelling technique, because of its

inability to relax the PDF form towards a Gaussian at

large distance, when the statistics of the concentration

field are homogeneous.
5. Conclusions

The PDF modelling technique developed in Cassiani

et al. (2005) was applied to the prediction of concentra-

tion moments and one point PDF of a passive tracer

released in the CBL.

The model is implemented using a dynamical time-

expandable grid, which allows simulations of releases

from localised sources in atmospheric flow within

acceptable computational times.

Model simulations for point and line sources were

compared with water tank experiments. The compar-

isons were satisfactory especially in consideration of the

complexity of the non-homogeneous, non-Gaussian

turbulence of the CBL.

The predictions of concentration statistics for a line

source are in good agreement with the observations at

short and intermediate distance. However, in the far

field the model predicts decaying fluctuation intensity

with distance, in contrast with the observed constant

intensity. The observed level of fluctuation intensity in

the far field was explained as the result of fluid

entrainment from the top of the boundary layer. This

effect is not currently accounted by the model because of

the simple reflective boundary conditions used in these

simulations. The model can be improved in this respect

by modelling the upper boundary as a porous interface

between the CBL and the upper atmosphere.

For point source releases the simulated concentration

statistics including mean concentration, concentration

fluctuations, and PDF of concentration show a satisfac-

tory agreement with the data measured in two different

laboratory experiments. For point source releases the

effect of fluid entrainment from the top of the boundary

layer on the decay of fluctuations is not apparent at the

distances covered by the simulations, possibly because

the contribution of the horizontal turbulence to the

generation of fluctuations is much stronger than that of

the vertical turbulence.

The model was compared with non-reactive scalar

data sets, however the model equations can account for

chemical reactions with straightforward modifications.

Future developments include the model extension to

chemically reactive substances and testing with experi-

mental data. Alternative micromixing models will also

be considered to overcome the limitations inherent in the

current IECM technique, which was found to relax the

initial shape of the concentration PDF to the observed

shape too slowly (Pope, 2000; Cassiani et al., 2005).
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