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ABSTRACT 

Twenty years ago, the multi-dimensional, positive definite, advection transport algorithm 

was introduced by Smolarkiewicz.  Over the two decades since, it has been applied countless 

times to numerous problems, however almost always on rectilinear grids.  One of the few 

exceptions is the Operational Multiscale Environment model with Grid Adaptivity (OMEGA), an 

atmospheric simulation system originally designed to simulate atmospheric dispersion in the 

planetary boundary layer, but since then used for both mesoscale (from meso-α to meso-γ) 

dispersion and weather forecasting.  One of the unique aspects of OMEGA is the triangular 

unstructured grid geometry which leads in a natural way to the creation of a global grid with 

continuously variable resolution from roughly 100 km over the oceans to less than 10 km over 

regions of interest.  Another unique aspect is the concept of dynamically adapting grid resolution 

– sometimes also called solution-adaptive grid resolution.  A central element of the modeling 

system, however, is its advection solver – MPDATA.  This paper presents the implementation of 

MPDATA on an unstructured grid and demonstrates its accuracy and efficiency using analytic 

and idealized test cases. 
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1.  Introduction 

In the early days of computing, geophysical fluid dynamics (GFD), predominately 

numerical weather prediction (NWP), was a dominant factor in the design of computer 

architecture and algorithms. This early work focussed initially on solving a finite difference 

equation on a uniform rectilinear computational grid and later on spectral methods.  After the 

initial work of Charney (1948), von Neumann (Charney et al., 1950), and Arakawa (1966), 

however, the focus shifted from the basic algorithms for the numerical solution of the 

fundamental differential equations to improvements in the model physics.  Further work on 

fundamental numerical algorithms shifted to other disciplines – predominately the then emerging 

aerospace community. 

In spite of this shift of focus, some researchers continued fundamental work into 

advection solvers for atmospheric applications.  In 1984, Smolarkiewicz introduced the Multi-

dimensional Positive Definite Advection Transport Algorithm (MPDATA) (Smolarkiewicz, 

1984).  Since that time, MPDATA has been implemented in numerous atmospheric and other 

models (e.g., Prusa and Smolarkiewicz, 2003; Iselin et al., 2002; Hasumi and Suginohara, 1999), 

though always based upon a structured rectilinear mesh. 

At the same time meteorology was benefiting from this research and technology boom, 

computational fluid dynamics (CFD) researchers were creating new innovative numerical 

techniques designed to model fluid flows around complex geometries.  In the 1970s and early 

1980s the models developed for aerospace engineering and plasma physics were surprisingly 

similar to their counterparts in the atmospheric sciences.  The grids were composed of regular, 

rectangular cells extending from no-slip or free-slip surfaces.  As more computational power 

became available and atmospheric modelers were implementing more physics into their models, 

CFD practitioners were busy refining complex gridding techniques around irregular surfaces.  

One of the methodologies developed was the use of unstructured triangular grids (Baum et al., 

1993; Luo et al., 1994). 

Starting in 1991, this paradigm of unstructured adaptive grids was applied to atmospheric 

simulations.  This paradigm has the advantage of tremendous flexibility in providing high 

resolution where required by either static physical properties (terrain elevation, coastlines, land 

use) or the changing dynamical situation (cf., Figure 1).  The effort resulted in the Operational 

Multiscale Environment model with Grid Adaptivity (OMEGA) (Bacon et al., 2000).  The 

OMEGA model with the embedded Atmospheric Dispersion Model (ADM) is an atmospheric 

simulation system originally designed for real-time airborne hazard prediction.  Because this 

problem involves extensive interaction between the atmosphere and the surface, the ability to 

accurately model the terrain features is of paramount importance.  OMEGA has demonstrated its 

ability to accurately predict the transport and diffusion of hazardous releases (Boybeyi et al., 

2001) as well as to accurately forecast the track of hurricanes (Gopalakrishnan et al., 2002).  

Originally designed for regional simulations, the model has since been extended to support the 

ultimate multiscale modeling challenge – global to local scale atmospheric simulation. 

While the gridding scheme utilized in OMEGA was new to atmospheric simulation, the 

base advection scheme was not.  The MPDATA algorithm was adapted to the unstructured mesh.  

While this was a unique application of MPDATA, it was a natural extension of the original 

formulation and the details of that adaptation and a demonstration of the results is the topic of 

this paper. 
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2.  Adaptive Unstructured Grids 

The basis for all computational 

methods is the assumption that a function f(x) 

is known at a set of discrete points xi.  The 

function is then expanded in a Taylor series.  

While a uniform grid analysis improves the 

solution by increasing the number of terms of 

the Taylor series that are retained, an 

adaptive grid analysis utilizes knowledge of 

the terms themselves to achieve the same 

result.  A demonstration of this can be seen 

for the Gaussian function ( ( )
2

x
f x Ae

−= ) on 

the interval from 0 to 10 (Figure 2).  A 21-

point uniform (0.5) grid and an 11-point non-

uniform grid of this function can both have 

an integral accuracy of 0.5%.  Where the 

slope is constant, however, the adaptive grid 

represents the function by only a few points.  

The real benefit of adaptive grids arises when 

the breadth of scales of the physical system is 

large.  In the case shown in Figure 2, the 

a)  b)  

Figure 1.  (a) Static adaptation creates a grid that captures the complex terrain and land/water 

boundaries; (b) dynamic adaptation puts high resolution only where required leading to 

computational efficiency.  The left panel shows a grid created for the San Francisco Bay area; the 

right panel shows the hurricane Floyd (1999) grid and wind speed (shading) at initialization and 

(inset) the high resolution portion 48 hours into the forecast.  (The observed storm track is shown 

at six hour intervals by the symbols.) 

 

Figure 2.  Two representations of a Gaussian.  

The gray curve represents a 501-point baseline 

representation, the black curve with dots 

shows a 21-point representation using a 

uniformly spaced (0.5) grid, and the diamonds 

show an 11-point adaptive grid representation. 
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range of scales was 10 (the domain) to 1 (sigma); in the atmosphere, the range of scales can be 

far greater. 

Unstructured triangular grids are the logical extension of the adaptive grid discussed 

above into two dimensions.  The OMEGA grid generator creates an atmospheric grid by 

tessellating the surface of the Earth using triangular tiles (cf., Figure 1) and then constructing 

radii through each of the surface vertices.  A set of surfaces is then constructed that are terrain 

following near the surface and spherical at high altitude.  While completely unstructured three-

dimensional (tetrahedral) meshes have been used for other purposes (Baum and Löhner, 1994; 

Schnack et al., 1998), the benefit of having a structured vertical dimension in an atmospheric 

grid is a significant reduction in the computational requirements of the model.  Specifically, the 

structured vertical grid enables the use of a tri-diagonal solver to perform implicit solution of 

both vertical advection and vertical diffusion.  Since in many larger scale applications the vertical 

grid spacing is one or more orders of magnitude smaller than the horizontal grid spacing, the 

ability to perform vertical operations implicitly relaxes the limitation on the time-step. 

The flexibility of unstructured grids facilitates the meshing of arbitrary surfaces and 

volumes in three dimensions.  In particular, unstructured grid cells in the horizontal dimension 

can increase local resolution to better capture topography or the important physical features of 

atmospheric circulation flows and cloud dynamics.  As mentioned in the introduction, the first 

application of adaptive, unstructured grids to atmospheric simulation is the OMEGA modeling 

system.  A complete description of this system can be found in Bacon et al. (2000).  Boybeyi et 

al. (2001) presents details of the OMEGA Atmospheric Dispersion Model (ADM) and the results 

of an extensive model evaluation against data from the ETEX experiment (Giradi et al., 1997; 

Dop et al., 1998).  Gopalakrishnan et al. (2002) presents the application of OMEGA, including 

dynamic adaptation, to hurricane track forecasting and a comparison against observations for 

20 forecasts covering 8 storms. 

In addition to OMEGA, Varvayanni et al. (1999) have used unstructured prisms in a 

diagnostic atmospheric dispersion model, which reads in a flow field and interpolates it over the 

mesh to predict trajectory of tracers.  In their case, they take advantage of the ability of 

unstructured grids to resolve the underlying terrain in a more realistic and efficient manner.  

Ghorai et al. (2000) have used tetrahedral meshes to provide solution-adaptation in both 

horizontal and vertical, also for atmospheric dispersion calculations.  Behrens et al. (2000) have 

implemented a semi-Lagrangian advection scheme on unstructured adaptive grids for weather 

forecasting.  These applications have shown the various inherent strengths of unstructured grids 

such as better representation of topography, computational efficiency (via static or dynamic grid 

adaptation), and the flexibility of the grid to resolve multiple scales. 

3.  Grid Generation 

Since the accurate solution of any complex computational problem depends on adequate 

spatial discretization of the computational domain, the accurate representation of multiscale 

events in numerical models has long been a principal issue in computational fluid dynamics.  For 

example, one typically desires to capture not only the development and evolution of small scale 

features but also their interaction with and influence upon the larger scale flow.  This is a 

particularly important requirement in atmospheric models, because numerous events such as 

fronts, clouds, and plumes are not only relatively localized with respect to their environment, but 

are also forced on scales larger than their own.  Because practical limitations in computer size 
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and speed prohibit the use of uniformly high spatial resolution appropriate for the smallest scales 

of interest, numerous techniques have been developed to deal with multiscale flows. 

Grid nesting techniques involve the sequential placement of multiple finer scale meshes 

in desired regions of the domain so as to provide increased spatial resolution locally.  The 

decision to spawn one or more sub-meshes is typically subjective and manually directed.  Some 

formulations allow the sub-meshes to move with particular features in the flow, such as 

hurricanes (Jones, 1977).  A principal limitation of grid nesting technique, however, is that one 

must know a priori and for the duration of the calculation the regions of the domain that will 

require high spatial resolution.  In other words, the trajectory of the moving grid has to be pre-

defined and therefore cannot be used for prediction.  Another principal limitation of grid nesting 

technique is the interaction among multiple nested meshes, particularly the tendency for 

propagating dispersive waves to discontinuously change their speeds upon passing from one 

mesh to the next and to reflect off the boundaries of each nest due to an impedance mismatch 

across the mesh boundaries (Zhang et al., 1986). 

One advantage of unstructured grids is the ease with which dynamic grid adaptation can 

be implemented.  There is no longer a need for involved user-expertise/interaction for creating 

topologies of complicated terrain features; the whole procedure can be fully automated, a feature 

that is not only highly desirable, but is required in operational settings.  Also, since the 

unstructured grid is a single mesh with a smooth and continuous transition from coarse to fine 

regions within the whole domain, the model is naturally two-way scale interactive without the 

interpolation error caused by the transfer of information from one nest to another.  This also 

eliminates the wave reflection problem common in nested grid models. 

The OMEGA model is currently the only operational atmospheric flow model based on 

the unstructured grid technique.  It can adapt its grid both statically and dynamically to different 

criteria.  Static adaptation creates a numerical grid resolving fixed features (e.g., land-water 

boundaries, terrain gradients, and/or any other feature that the user includes in the adaptation 

scheme) with a resolution that smoothly varies from the maximum to the minimum specified 

(Figure 1a).  In addition, OMEGA grids can be further refined in one or more specific 

geographical areas that can be specified at the time of grid creation.  Dynamic adaptation 

(Figure 1b) adds the periodic re-adaptation of the grid to regions that require high resolution 

during the course of a simulation (e.g., frontal zones, hurricane circulation, pollutant plumes). 

a.  Static Grid Adaptation 

The total number of grid points necessary to perform a successful numerical computation 

that recovers the correct physics can be greatly reduced in an unstructured grid.  By this we mean 

that the recovery of the model physics at the smallest length scale resolved does not require the 

complete domain to have the same resolution.  The resources of the numerical and computational 

machinery are focused on the regions of importance.  This is especially significant for three-

dimensional hydrodynamic problems, where our experience has shown the resulting economy 

can make the difference between tractability and intractability (cf., Baum et al., 1993). 

In OMEGA, the adaptation of the unstructured grid takes place through a variety of grid 

operations including vertex addition, vertex deletion, vertex reconnection, and edge bifurcation 

(cf., Bacon et al., 2000).  The OMEGA grid in the “static” adaptation case is adapted a priori to 

resolve static features such as terrain gradients, land-water boundaries, and/or any other feature 

that the user includes in the adaptation scheme.  The grid can also be refined in one or more 
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specified geographical areas, such as theaters of operation, by the specification of rectangular 

regions in which higher resolutions are specified.  Within each region, grid generation is 

governed by user-specified minimum and maximum resolutions.  The user can alternatively 

specify a location in the domain and a radius of influence around it; the grid generator will then 

refine the grid within the region of influence.  The result of the use of high-resolution regions 

and/or circular region refinement is not a nested grid, but a single grid with variable resolution. 

An important feature of the unstructured grid is the ability to simulate mountains and 

coastal features without the “stair-step” geometry required by nested grid models (cf., Zhang, et 

al., 1986).  Triangular grids can naturally follow the coastline better, leading to improved land-

water circulations, and can better capture the geometry of mountainous regions.  This is 

especially important for near-surface simulations such as those affecting airport terminal 

operations (cf., Figure 1a). 

b.  Dynamic Grid Adaptation 

OMEGA also has the ability to adapt its grid during a simulation to different criteria such 

as frontal activity, convection, hurricanes (Gopalakrishnan et al., 2002), and/or a pollutant plume 

(Sarma et al., 1999).  This enables atmospheric features that require additional grid points for 

adequate simulation to be resolved as they appear.  Thus, through the combination of adaptation 

methods and criteria, the grid can be coarse where the circulation is regular and smooth, but 

greatly refined where there are sharp gradients, where topographic features are important, or 

where model physics or dispersion source terms require fine resolution. 

c.  Global Grid Generation 

The generation of global grids (Ahmad et al. 2002) was simplified by the addition of two 

features:  (1) the implementation of an initial icosahedral grid; and (2) a quadrature routine that 

divides a single triangle into four new triangles.  Both of these features are illustrated in 

Figure 3a.  Given an initial icosahedral grid, the iterative employment of quadrature six (6) times 

results in a near-spherical grid with relatively uniform resolution of 125 km (Figure 3b).  At this 

point, the usual OMEGA grid generation adaptation to the underlying terrain is enabled resulting 

in a final grid with continuously variable resolution such as that shown in Figure 3c.  The 

problems due to polar singularities are also effectively eliminated. 

a)  b)  c)  

Figure 3.  The OMEGA global grids start (a) with an icosohedron, which is then refined using 

quadrature (dotted lines).  After 6 iterative refinements, a roughly uniform mesh (b) is created 

with resolution ranging from 100-150 km.  The normal OMEGA adaptation criteria are then 

applied to create the final mesh (c). 
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4.  MPDATA on Unstructured Grids 

The hydrodynamic elements of the 

OMEGA model are based on numerical 

methods of solution of the Navier-Stokes 

equations on an unstructured grid in the 

horizontal direction and a structured grid in 

the vertical.  A standard split-operator 

methodology is used, calculating advection 

terms explicitly and diffusion terms 

implicitly.  In the calculation of momentum, 

the pressure gradient, Coriolis, and buoyancy 

terms are calculated explicitly along with the 

advection terms.  An implicit vertical filter 

and an explicit horizontal filter are applied to 

the vertical momentum.  The calculation of 

the new momentum at each time-step thus 

involves several steps, which are described 

below.  All implicit operations are performed 

by tri-diagonal matrix inversion. 

MPDATA was originally developed for regular grids by Smolarkiewicz (1984), 

Smolarkiewicz and Clark (1986), and Smolarkiewicz and Grabowski (1990).  This paper 

describes the implementation of MPDATA on unstructured triangular prism grids.  The resulting 

scheme is second-order-accurate in time and space, conservative, combines the virtues of the 

MPDATA (e.g., ability to separately ensure monotonicity and positive definiteness) with the 

flexibility of unstructured grids (Baum and Löhner 1994), and can run efficiently on highly 

parallel computers.  The essential methodology is described below along with a demonstration of 

the method on two-dimensional passive advection test problems. 

In discussing unstructured grids, it is necessary to define the nomenclatures.  To reiterate, 

the basic control volume element in our structured-unstructured computational domain is a 

truncated triangular prism.  Each prism is bounded by five faces.  For advection across each face, 

it is convenient to define a local coordinate system with its origin located at the center of the 

face.  Each face separates the left-hand-side (LHS) from the right-hand-side (RHS) such that the 

flow from the LHS cell to the RHS cell is considered positive.  For simplicity, the advected 

variable, hereafter denoted as ψ, is placed at the cell centroid, while the velocity vector is defined 

on the cell face at the origin of the local coordinate system.  Figure 4 shows the basic 

arrangement of the variables on a two-dimensional grid. 

In its explicit form MPDATA adapts naturally to the above construct.  As posed by 

Smolarkiewicz, the algorithm can be generalized to the following steps: 

1) At each cell face the low-order flux is found in conservative form using the 

standard first-order-accurate “upwind” scheme; 

2) The advected variable is integrated using the low-order flux; 

3) At each cell face, the low-order scheme is expanded in a Taylor series and the 

truncation error in the flux is explicitly identified; 

4) The error term is cast in the form of error velocity, Ve; 

 

Figure 4.  Arrangement of the variables on a 2-

dimensional unstructured-grid.  The generic 

advected variable, ψ, is placed at cell centroids.  

The subscripts L and R designates their left-

hand-side and right-hand-side cell placements.  

The velocity is decomposed into normal and 

parallel components (relative to the common 

edge).  The flux F is co-located with Vn at the 

face centers, and points in the normal direction 
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5) The correction velocity, Vc (= –Ve), is optionally limited to preserve 

monotonicity of the advected variable (Smolarkiewicz and Grabowski, 1990); 

6) Replacing V with Vc, steps (1) through (5) are repeated a chosen number of 

times (=Nc) to achieve greater accuracy. 

Although Smolarkiewicz derived Vc for a rectangular grid, it can be generalized to a grid 

with arbitrary control volume shape as long as the bounding faces are flat.  Consider the generic 

advection equation, 

 ( ) .0=Ψ⋅∇+
Ψ

V
rr

t∂

∂
 (1) 

To compute the change in ψ from time t = t0 to t0+∆t, it is necessary to integrate the flux 

Ψj j

r
V  through each face j during the period ∆t: 

 
0

0

t t

j j j j
t

dt
+∆

∆Ψ = Ψ ⋅∫ V a
r r

 (2) 

Here 
r
a ej j na= $  is the area vector of face j, where $en  denotes the unit vector normal to the face 

and pointing from left to right.  For this integral, 2nd-order accuracy in space is achieved 

automatically by placing 
r r
F V= Ψj j  at the center of each face (in practice, Ψj  at the faces is 

obtained by interpolation).  Similarly, to ensure 2nd-order accuracy in time, Ψj j

r
V  should be 

evaluated at t = t0+∆t/2.  Assuming that a leapfrog algorithm is used (i.e., 
r
Vj  is defined at t = 

t0+∆t/2), we need only expand Ψj  in a Taylor series as 

 0 2( )
2

j

j j

t
O t

t

∂

∂

Ψ ∆
Ψ = Ψ + + ∆  (3) 

where the superscript 0 denotes an evaluation at t = t0.  Substituting (3) for Ψj  in (1) and 

performing the time integral, (2) becomes 

 t
t

t
jj

j

jj ∆⋅






 ∆Ψ

+Ψ=∆Ψ aV
rr

2

0

∂

∂
 (4) 

Now substituting (1) for 
t

∂

∂

Ψ
 in (4) we have 

 ( )[ ] t
t

jjjjjjjj ∆⋅






 ∆

Ψ⋅∇+Ψ∇⋅−Ψ=∆Ψ aVVV
rrrrrr

2

0  (5) 

If we further let vn j n= ⋅
r
V e$  denote the component of the velocity normal to the face (and 

thus 
r
V en n nv= $ ), then the first order upwind flux term is given by 

 ( ) ( ){ }1
ˆ ˆ

2

upwind

j n n n L n n n R j
v v t∆Ψ = + Ψ + − Ψ ⋅ ∆V e V e a

r r r
 (6) 

Now letting 
r

δ L  denote the vector pointing from the cell centroid on the left to the face 

centroid, and 
r

δ R  the vector pointing from the face centroid to the cell centroid on the right, we 

can write 
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 L j L jδΨ = Ψ − ⋅∇Ψ
r r

 (7a) 

and 

 R j R jδΨ = Ψ + ⋅∇Ψ
r r

 (7b) 

Similarly, we will let 

 δΨ Ψ ΨL j L= −  (8a) 

and 

 δΨ Ψ ΨR R j= −  (8b) 

Now we can rewrite (4) as: 

 ( )0 1
ˆ

2

upwind

j n j n n L R jv tδ δ
 

∆Ψ = Ψ − Ψ + Ψ ⋅ ∆ 
 

V e a
r r

 (9) 

The correction term is the difference between (4) and (9). After some algebraic manipulation, this 

correction term can be written as 

 ( )
2

jR L

c n n j j j

R L

t
v v a t

  ∇Ψ Ψ − Ψ ∆ 
∆Ψ = − ⋅ + ∇ ⋅ Ψ ∆   

Ψ + Ψ Ψ     

V V

r
r r r

 (10) 

where 
Ψ

Ψ Ψ
=

+R L

2 . 

The correction velocity is now: 

 ( )
2

jR L

c n n j j

R L

t
v v v

 ∇Ψ Ψ − Ψ ∆
= − ⋅ + ∇ ⋅  

Ψ + Ψ Ψ    
V V

r
r r r

 (11) 

In actual implementation, the correction term becomes 

 ta
t

vv jRLj
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n
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

 ∆












⋅∇+

Ψ

Ψ∇⋅
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






Ψ+Ψ

Ψ−Ψ
=∆Ψ ,

~

2~

~

~~

~~

V
V rr

rr

 (12) 

where 
~
Ψ  is the value of the advected quantity following the first-order upwind advection step. 

We limit the number of correction steps to Nc=1, since additional correction steps are not 

cost effective.  The effect of additional correction steps is to bring the solution closer to 2nd-

order accuracy, which is very nearly achieved with just one correction step; the additional 

accuracy attainable is limited. 

5.  MUSCL-Type Scheme for Comparison 

The description of a Monotone Upstream-centered Scheme for Conservation Laws 

(MUSCL)-Type scheme used for comparison purposes is given in this section.  Higher-order 

accuracy in space for the Godunov method (Godunov 1959) can be achieved by constructing 

piecewise linear data from cell averages (van Leer 1979): 
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where, ΨL is the extrapolated value of the conserved quantity Ψ on the left side of the face of the 

control volume, the subscript il is used for the cell center quantities in the cell on the left of the 

face, e.g., Ψil is the cell-averaged value of the conserved quantity Ψ and (xil,yil) are the cell center 

coordinates of the cell on the left.  Similarly, ΨR is the extrapolated value of the conserved 

quantity Ψ on the right side of the face, the subscript ir is used for the cell center quantities in the 

cell on the right of the face, e.g., Ψir is the cell-averaged value of the conserved quantity Ψ and 

(xir,yir) are the cell center coordinates of the cell on the right.  The point of intersection between 

the face and the line connecting the centers of the two cells on either side of the face is denoted 

by (xface,yface).  Lface is the limiter on the gradient to ensure a monotonic solution.  For higher 

spatial accuracy, these extrapolated values are used in the flux calculations instead of cell-

centered averages. 

The piecewise linear reconstruction of data is bounded by enforcing the following 

condition (Barth and Jesperson 1989), 

 maxmin ),( jjj yx Ψ≤Ψ≤Ψ . (15) 

where, 

 ),(minmin

ij
Ni

j
j

ΨΨ=Ψ
∈

 (16) 

and 
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j
j

ΨΨ=Ψ
∈

, (17) 

where, Nj are the neighbors of the cell j.  The limiter Lface can now be determined by: 
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face

if

if

if

L , (18) 

where, Ψo is the cell-averaged value and Ψface
 is the extrapolated value on the face of the cell.  

Three values of Lface are obtained for each cell (one for each face) from (18) and the minimum of 

the three is used to limit the gradient at the cell center.  The gradients are calculated using the 

Green-Gauss gradient reconstruction. 

6.  Idealized Advection Tests 

To test the implementation of MPDATA on an unstructured grid, several analytic and 

idealized test problems were used.  The first was a convergence study in which a tracer field 

(Gaussian function) is rotated in two-dimensions on meshes of varying resolutions.  The second 
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was the deformational flow first proposed by Smolarkiewicz (1982).  The third is the Doswell 

(1984) frontogenesis case and the final test problem was a solution-adaptive case study. 

In all of these cases, the following statistics are used for comparison purposes.  The RMS 

error is given by: 

 ( )
2

1

1 ncells
exact computed

rms i i

i

E q q
ncells =

= −∑  (19) 

while the error is defined in terms of the L2-norm (Burg et al., 2002): 

 ( )
2

2

1

ncells
exact computed

L i i i

i

E q q A
=

= −∑  (20) 

where, ncells is the total number of cells in the mesh and Ai is the area of each cell.  The phase 

error is defined as the distance between the location of the exact maximum and the computed 

maximum (Iselin et al., 2002): 

 ( ) ( )
2 2

exact computed exact computed

phaseE x x y y= − + −  (21) 

where x
exact

 and y
exact

 are the coordinates of cell in which the tracer maxima lies for the exact 

solution and x
computed

 and y
computed

 are the coordinates of the cell in which the maxima lies for the 

computed solution.  The diffusion error was found by subtracting the computed tracer maxima 

from the exact value of the tracer maxima (Iselin et al., 2002): 

 ( ) ( )max maxexact computed

diffusionE q q= −  (22) 

a.  Convergence Study 

A convergence study was performed to demonstrate the order of accuracy of the scheme.  

The domain was bounded within [-50,150] × [0,173.2051] and consisted of only equilateral 

triangles.  This ensured a factor of 2 increase in mesh resolution at each successive refinement of 

the mesh.  A smooth Gaussian cone function was initialized, centered at (xc, yc) = (50, 0.67ymax): 

 )005.0exp(),( ryxq −=  (23) 

 
22 )()( cc yyxxr −+−=  (24) 

The rotational flow field was defined as: 

 
( ) ( )
( ) ( )

,

,

o

o

u x y y y

v x y x x

ω

ω

= − −

= −
 (25) 

where, u(x,y) and v(x,y) are the velocities in the x and y-direction respectively, ω = 0.1 is the 

constant angular velocity and (xo, yo) is the center of the mesh.  The simulation was run for 

62.8487 s, which is the time taken by the cone to complete one revolution = 2π / ω.  The tests 

were run using four (4) schemes:  (1) upwind; (2) (MUSCL)-type with slope limiter; (3) 

(MUSCL)-type with no limiter; and (4) the MPDATA scheme. 

Transmissive boundary conditions were defined with the help of ghost cells (LeVeque, 

2002) which are mirrors of the boundary cells.  The solution was marched in time using a two-

stage explicit Runge-Kutta scheme (Jameson et al., 1981).  A CFL criteria of 0.9 was set for all 
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four schemes.  Green-Gauss gradient-reconstruction was used to achieve higher-order spatial 

accuracy for the MUSCL-type scheme described in Ahmad et al. (2005). 

Figure 5 shows the concentration contours after one revolution for the different schemes; 

the comparison with the exact solution is shown in Figure 6, which shows concentration profiles 

at y = 115.47 for x between 0 and 100.  The errors and timings for the different schemes are 

shown in Figure 7.  The mesh resolutions (dx), errors (error in the L2-norm, EL2; RMS error Erms; 

diffusion error, Ediffusion; and the phase error, Ephase), timings (timecpu) and the order of accuracy 

(pL2 and prms) for the MPADATA and MUSCL-type scheme are tabulated in Tables 1-2.  The 

calculations were made on an AMD Opteron (2.19 GHz) running SuSE Linux 9.3 with the 

timing obtained by the simple expedient of using the Linux time command. 

 
Figure 5.  The results of a rotating Gaussian cone test using, (a) an upwind scheme, (b) 

MPDATA scheme, (c) a MUSCL-type with no limiter, and (d) a MUSCL-type scheme with 

limiter after one revolution (t  = 62.8487s). 
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Figure 6.  Comparison of the results of upwind, MUSCL-type with limiter, MUSCL-type with no 

limiter and MPDATA schemes for a rotating Gaussian hill test with the exact solution after one 

revolution.  The profiles shown are at y = 115.47 for x varying from 0 to 100.  (t = 68.8487s). 
 

  
Figure 7.  Reduction in error for different schemes with increase in mesh resolution and the 

associated computational cost. 
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Table 1:  MPDATA 
dx EL2 pL2 Erms prms Ediffusion Ephase timecpu 

6.25000 6.302 -- 0.0390 -- 0.382 7.216 0.668 

3.12500 2.314 1.45 0.0143 1.45 0.106 1.804 5.613 

1.56250 0.680 1.92 0.0042 1.77 0.036 0.902 50.38 

0.78125 0.196 1.63 0.0012 1.81 0.010 0.000 530.346 

Table 2:  MUSCL-type with Barth-Jesperson slope limiter 
dx EL2 pL2 Erms prms Ediffusion Ephase timecpu 

6.25000 2.932 -- 0.0180 -- 0.279 3.608 0.891 

3.12500 0.692 2.08 0.0041 2.13 0.088 3.125 7.771 

1.56250 0.166 2.06 0.0010 2.00 0.027 1.563 70.244 

0.78125 0.058 1.52 0.00036 1.47 0.008 1.193 694.5 

Figure 5 shows the improvement in accuracy and shape preservation by implementing 

one iteration of correction step of the MPDATA scheme in the baseline upwind scheme.  For 

reference, the results are also compared with a MUSCL-type scheme and the MUSCL-type 

scheme with no limiter.  The comparison with the exact solution is shown in Figure 6, which 

shows concentration profiles at y = 115.47 for x between 0 and 100.  The MPDATA scheme is 

slightly more diffusive than the MUSCL-type scheme (the result of MUSCL-type with no limiter 

is also plotted for reference).  The results of the convergence study are shown in Figure 7.  The 

MPDATA scheme shows second-order convergence as the mesh resolution approaches zero in 

the RMS error, the trend is not clear in the L2-norm.  The average order of accuracy in both the 

L2 and RMS error is 1.67 for the MPDATA scheme, whereas the average order of accuracy for 

the MUSCL-type scheme with slope limiter is 1.89 in the L2 error and 1.87 in the RMS error.  

The MUSCL-type scheme is less diffusive than the MPDATA scheme.  The shape-preservation 

is better for the MUSCL-type scheme on a coarse resolution mesh shown in Figure 5, but 

becomes similar for both MPDATA and MUSCL-type solutions on high resolution meshes.  The 

MPDATA scheme, however is approximately 1.3 times faster on the finest mesh.  The phase 

error for the MPDATA scheme is much larger on coarse resolution meshes but improves as the 

mesh resolution is increased and becomes less than the error in MUSCL-type scheme. 

b.  Smolarkiewicz’s Deformational Flow Test 

The deformational flow problem, first proposed by Smolarkiewicz (1982) and later 

analyzed by Staniforth et al. (1987), is often used for a qualitative evaluation of advection 

schemes for atmospheric flow simulations (e.g., Sykes and Henn 1995).  The flow field for the 

deformation test consists of sets of symmetrical vortices and is given by: 

 
( ) ( ) ( )
( ) ( ) ( )

, sin sin

, cos cos

u x y Ak kx ky

v x y Ak kx ky

=

=
 (26) 

where, u(x,y) and v(x,y) are again the velocities in the x and y directions respectively, k = 4π/L,  

A = 8 and L = 100 units.  The domain was bounded by [0,100] × [0,100].  The unstructured mesh 

was defined in terms of boundary edges (100 edges on each side).  The resulting mesh consisted 

of 38510 triangles with the edge lengths ranging from 0.42 m to 1.28 m.  A tracer cone with a 

height of 1 unit and radius of 15 units was initialized in the middle of the domain.  The mesh, 

boundary conditions, gradient reconstruction technique, were the same as in the rotating cone 
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test.  A four-stage Runge-Kutta explicit scheme was sued to march the solution in time. Figure 8 

shows the tracer distribution at time = T/50 (T = 2637.6 s is the final time of integration used in 

Smolarkiewicz (1982)).  Figure 9 shows the comparison with Staniforth’s analytical solution for 

tracer values between x = 25 and 50, for y = 50.  The profiles of the computed tracer field are 

generated by interpolating the data from the cell centers closest to points on the line (25,50)-

(50,50).  The Staniforth solution is computed numerically and requires an input of sampling 

interval.  For the comparison shown in Figures 8-9, a sampling interval of 0.1 was used.  

Staniforth et al. (1987) discussed this test case in detail.  They point out that for a mesh 
 

resolution of 1 used in Smolarkiewicz (1982), the numerical solution is valid only for  

a)  b)  

c)  d)  

Figure 8.  The initial conditions (a), and the results of the Smolarkiewicz deformational flow test 

using (b) an upwind scheme, (c) MPDATA, and (d) a MUSCL-type scheme with slope limiter at 

t =  T/50 (52.752s) into the simulation (bottom) (T = 2637.6s). 
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time ≤ T/50.  After time > T/50 the features of the tracer field become too small to be effectively 

captured by a mesh resolution of 1, normally used for this test. 

c.  Doswell’s Frontogenesis Test 

The Doswell frontogenesis problem (Doswell, 1984; Hólm, 1995) is an idealized model 

describing the interaction of a nondivergent vortex with an initially straight frontal zone.  The 

flow field was defined as follows: 

 

( )

( )

max

max

,

,

t

t

fy
u x y y f

r f

fx
v x y x f

r f

= − ≡ −

= ≡

 (27) 

where, u(x,y) and v(x,y) are the velocities in the x and y directions respectively, r is the distance 

from any given point to the origin of the coordinate system, fmax = 0.385 is the maximum 

tangential velocity and ft is given by: 

 
( )
( )2

tanh

cosh
t

r
f

r
=  (28) 

The triangular domain consisted of equilateral triangles with edge length = 0.09.  The 

mesh had a total of 16384 cells.  The boundary conditions and the time-marching scheme were 

the same as in the rotating cone test.  The simulation was run for t = 4 seconds.  The evolution of 

tracer field in time t, is given by the exact solution: 

 ( ) ( ) ( ), , tanh cos sin
y x

q x y t f t f t
δ δ

 
= − −  

 (29) 

where, and δ is set to 2 for a smooth 

frontogenesis. 

Figure 10 shows the initial conditions 

and a comparison between the exact and the 

numerical solutions.  The simulation results 

are in good agreement with the exact 

solution.  For example, the Doswell 

analytical solution predicts the maximum 

deformation of the frontal zone near the 

radius of maximum winds and this result is 

accurately reproduced by the numerical 

model in both the MPDATA and MUSCL 

implementations. 

d.  Solution-adaptation 

As a final test, the rotating-cone test was 

used to demonstrate the advantages of the 

solution-adaptive technique.  The domain 

was bounded within [0,100] x [0,100].  The 

cone was centered at (xc, yc) = (50,75) with a 

 
Figure 9.  Comparison of the results of upwind, 

MUSCL-type and MPDATA schemes for a 

deformational flow test with the exact solution 

at time T/50 = 52.752s.  The values for x 

between 25 and 50 are shown for y = 50.  The 

sampling interval was set to 0.1 for the 

analytical solution (T = 2637.6s). 
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maximum height of 0.975 unit and a radius of 10 units.  The rotational flow field was defined in 

the similar manner as in the convergence study with the exception that the constant angular 

velocity ω, was set to 0.4.  The simulation was run for 15.7079 s (time taken by the cone to 

complete one revolution = 2π/ω).  The unstructured mesh was defined in terms of boundary 

edges (100 edges on each side for the globally refined mesh and 25 edges on each side for the 

adaptive and coarse mesh).  The adaptive mesh started with a minimum edge length of 0.337 and 

a maximum edge length of 4.667.  As the mesh was adapted the mesh resolution varied from 

maximum edge length of roughly 5 and minimum edge of approximately 0.20 in different 

adaptation cycles.  The globally fine mesh had edges ranging from 0.22 to 1.27. 

a)  b)  

c)  d)  

Figure 10.  The initial conditions (a), and the exact solution (b) for the Doswell frontogenesis test 

compared with the solution using (c) MPDATA scheme, and (d) a MUSCL-type scheme with 

slope limiter at t = 4s. 
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The adaptation criteria was defined in terms of the cone radius.  Three radii were defined 

– Rcone was set to the radius of the cone; Rref was 2.5 units larger than Rcone and Rcoarse was 

defined as 4.5 units larger than Rcone.  The maximum and minimum allowable edge lengths were 

also specified.  The cells were tagged for refinement if a cell with large edge lengths was found 

between Rcone and Rref and cells were tagged for deletion if a cell with small edge lengths was 

found outside the circle defined by Rcoarse.  The refinement cycle was invoked every 15 iterations 

and the coarsening cycle was invoked every 150 iterations. 

Figure 11 shows the tracer concentration contours at the initial time, at intermediate 

stages, and after one revolution for the solution-adaptive run.  Figure 12 compares the 

concentration profiles at y = 75 for x between 25 and 75 with the exact solution.  The adaptive 

a)  b)  

c)  d)  

Figure 11.  The initial conditions (a), and (b-d) the solution-adaptive grid solution at three times 

ending after one complete revolution. 
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run is slightly more diffusive than the 

globally refined mesh run (the profile for the 

simulation on the coarse mesh is also plotted 

for reference); however, overall the results 

are comparable and the adaptive grid solution 

is approximately twice as fast as the globally 

refined solution. 

7.  Conclusions 

MPDATA has been implemented on 

an unstructured adaptive grid with excellent 

performance for environmental flow 

situations.  While the scheme is not as 

accurate as MUSCL-type advection schemes, 

neither is it as computationally expensive.  

Apart from speed the other advantages of the 

MPDATA scheme are in its 

multidimensional nature (MUSCL-type 

schemes rely on Riemann solvers which are 

one-dimensional); and the simplicity of the 

method itself both in its design and 

implementation (Smolarkiewicz and Grabowski, 1990).  The efficiency in speed becomes 

especially crucial for real-time atmospheric flow simulations which require much CPU time for 

the calculations related to planetary boundary layer physics/turbulence closure, atmospheric 

radiation heat transfer and cloud microphysics.  The benefit of implementing MPDATA on an 

unstructured grid comes from the flexibility that such grids provide.  Static adaptation of the 

underlying terrain is a significant improvement in geophysical fluid dynamics over the traditional 

nested rectilinear grids currently used; the addition of solution-adaptive gridding provides a 

major (factor of 2) improvement in performance while maintaining high accuracy locally. 
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Figure 12.  Comparison of a rotating cone test 

on the adaptive, coarse and globally refined 

meshes with the exact solution after one 

revolution.  The profiles shown are at y = 75 for 

x varying from 25 to 75 (t = 15.7079s). 
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