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1 INTRODUCTION 

Discretizations based on unstructured grids have 
been widely used in other scientific disciplines for 
modeling problems bounded by complex geometries.  
Solution-adaptive techniques are relatively easy to 
implement on unstructured grids and in addition they 
provide a convenient way to model the multi-scale 
spanning nature of atmospheric flows.  This paper 
describes the implementation of a higher-order 
Godunov-type scheme on unstructured adaptive grids 
for the advection-diffusion equation in two dimensions.  
Validation of the numerical scheme and the solution-
adaptive technique against exact solutions of 
benchmark cases is discussed.  It is shown that the 
scheme is conservative, exhibits little numerical 
diffusion and is well suited for modeling Eulerian 
transport.  The improvement in computational efficiency 
while maintaining the accuracy of the solution via 
solution-adaptive techniques is also demonstrated. 

The unstructured grid technique has been 
extensively applied in engineering problems for 
discretizing computational domains with complex 
geometries (Baum and Löhner 1989; Löhner 2001; Luo 
et al. 2003).  This capability is essential for resolving 
complex terrain features and shoreline boundaries for 
mesoscale (Bacon et al. 2000; Boybeyi et al. 2001) and 
urban-scale modeling (Camelli et al. 2004).  In addition, 
computational efficiency can be achieved by providing 
variable and continuous resolution throughout the 
computational domain, with a high mesh resolution only 
in regions of interest (Ahmad et al. 1998; Behrens et al. 
2000; Ghorai et al. 2000; Sarma et al. 1999). 

The Eulerian transport model is usually favored 
when dealing with complex physical processes such as 
advection of chemically reactive agents or wet 
deposition.  Eulerian approach is also considered to be 
more suitable for describing diffusion in non-stationary 
and non-homogeneous flows (Arya 1999).  Another 
advantage is the simplicity of the flow model itself 
compared to the Lagrangian approach.  In spite of these 
advantages there are also limitations associated with 
the Eulerian models. 
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In general, the Eulerian transport models suffer 
from several limitations.  Firstly, the treatment of 
advection in Eulerian models usually introduces artificial 
numerical diffusion and sometimes, spurious oscillatory 
behavior.  This can be a problem when advecting non-
negative physical quantities such as concentrations.  
Secondly, use of the gradient-transfer hypothesis limits 
these models to time scales much larger than the 
turbulence integral time scale and to pollutant spatial 
scales much larger than the turbulence integral spatial 
scales.  Thirdly, the pollutant mass being modeled must 
have a spatial extent that is, at least equal to four or 
more horizontal and vertical mesh increments in order to 
adequately define the gradients and minimize advection 
phase errors.  Finally, the above-mentioned limitations 
make the treatment of point and line sources in Eulerian 
models particularly difficult. 

Eulerian transport models therefore, require both 
accurate numerical schemes and fine mesh resolution.  
However, limitations on computational resources can 
prohibit the use of high mesh resolution throughout the 
computational domain.  Unstructured adaptive grids can 
be used to minimize the computational overhead while 
attempting to attain the desirable accuracy in the 
solution.  This paper discusses both the implementation 
and the validation of a higher-order Godunov-type 
scheme on unstructured adaptive grids and the use of 
solution-adaptive techniques to overcome some of the 
limitations of the Eulerian transport models. 

2 NUMERICAL SCHEME 

The two-dimensional unsteady advection-diffusion 
equation in the absence of source terms can be written 
in the conservative form as: 
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where, 

 qvGquFqQ === ,,  (2) 

q is the Eulerian tracer, k is the diffusion coefficient, u is 
the velocity component in the x-direction and v is the 
velocity component in the y-direction.  The advection 
part of the scalar transport equation is solved using a 
higher-order Godunov-type scheme (Godunov 1959).  
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These finite volume discretizations are conservative and 
have the ability to resolve regions of steep gradients 
accurately, thus avoiding dispersion or phase errors in 
the solution.  Eqns. (1)-(2) can be written in the integral 
form as: 

 ���
ΓΓΩ

Γ⋅+Γ−=Ω dnJdnGFdQ
dt
d ��

).,(  (3) 

where, QkJ .∇−= , n is the unit normal pointing out of 
the control surface Γ  of the control volume Ω.  Figure 1 
shows the cell-centered control volume, Ω with each of 
its control surfaces and the unit normals pointing 
outwards from the control surfaces.  Eqn. (3) can be 
approximated directly: 
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where, Vcell is the volume of the control volume (area of 
the triangle in the case of the two-dimensional triangular 
mesh), Qcell is the cell-averaged value of the conserved 
quantity Q at cell center and s is the control surface 
area (edge lengths of the triangle in case of the two-
dimensional mesh). 

 

 
Figure 1:  Control volume Ωo. 

 
The fluxes are calculated by summing all the 

incoming and outgoing fluxes through each face of the 
control volume.  As mentioned earlier, the advective flux 
across each edge of the cell is calculated using 
Godunov’s method.  The values on either side of a cell 
edge form the initial conditions for the Riemann problem 
(for details see Toro 1999).  The solution is marched in 
time within the multi-stage Runge-Kutta explicit time 
marching scheme (Jameson et al. 1981).  In a loop over 
edges the values of cells on either side of the edge are 
used to calculate the fluxes.  Once the fluxes have been 
calculated, they are added to the cell centered value in 

a loop over cells.  For the higher-order calculation 
gradient-limited extrapolated values are used in the 
Riemann solver instead of cell averages (van Leer 
1979).  Both the Green-Gauss and the Linear Least-
Squares gradient reconstruction (Barth and Jesperson 
1989) techniques have been implemented to extend the 
spatial accuracy of scheme to higher-order.  The 
scheme is made total variation diminishing (Harten 
1983) with the help of slope limiters (Barth and 
Jesperson 1989; van Leer 1979).  The diffusive flux 
across the edge is calculated by finding the gradients on 
the edge: 
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where, k is the diffusion coefficient and nx and ny are the 
edge normal unit vectors in x and y-directions 
respectively.  In practice, unstructured meshes do not 
have an orthogonal structure (the line intersecting the 
cell centers on either side of an edge would be 
perpendicular to the edge for an orthogonal mesh, e.g., 
a mesh consisting of only equilateral triangles).  
Therefore, a correction term is included to account for 
this lack of orthogonality: 
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where, c denotes the line connecting cell centers on 
either side of an edge (line connecting points (xil,yil) and 
(xir,yir) in Figure 2) and cx and cy are the normal unit 
vectors for the line segment c.  The correction term is 
given by: 
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qil and qir are the scalar quantities in the cell to the left 
and the right of the edge and c

�
is the length of the line 

connecting the cell centers on the either side of the 
edge.  The average gradient on the cell faces is 
calculated by a simple average of gradients in the cells 
on either side of the edge (in cells il and ir): 
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The cell-centered value of the gradients is also 
needed in the extrapolation for the higher-order 
advection scheme and is calculated using the methods 
mentioned earlier.  The time step restriction due to 
advection is given by: 
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where, u is the normal velocity at edge and ∆x is the 
distance between the cell center and the point of 
intersection of the edge with the line connecting the cell 
centers on either sides of the edge (see Figure 2).  The 
CFL criteria was set to 0.9 in all simulations.  The time 
step restriction due to diffusion is given by: 
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Since, the time step due to diffusion is too 
restrictive, both explicit and implicit time-marching 
schemes have been implemented. 

 

 
Figure 2:  Calculation of diffusive fluxes. 

 
The methodology used for dynamically adapting the 

mesh is described in Ahmad et al. (1998). 

3 RESULTS 

The results from three analytical test cases are 
discussed in this section.  A convergence study to 
measure the order of accuracy of the flow solver 
(advection equation), a solution-adaptive simulation to 
demonstrate the advantage of using unstructured grids 
(advection equation) and finally the advection-diffusion 
equation was simulated for validation against exact 
solution. 

3.1 Convergence Study 

The simulation of Doswell’s cyclogenesis problem 
(Doswell 1984) is presented in this section.  A 
convergence study was performed to observe the 
reduction in error with increased mesh resolution and 
the cost of higher accuracy, which comes with it.  The 
scalar advection equation was solved for this case.  The 
flow field for the Doswell test can be defined as follows: 
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where, r is the distance from any given point to the 
origin of the coordinate system (i.e. the point: x = 0 and 
y = 0), fmax = 0.385 is the maximum tangential velocity 
and ft is given by: 
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The simulation was run for t = 4 units.  The 
evolution of tracer field in time t, is given by the exact 
solution: 
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where, δ is the characteristic width of the frontal zone.  
The value of δ was set to 2 for a smooth cyclogenesis.  
The initial tracer field can be obtained from Eqn. (15) by 
setting t = 0.  Error in the solution is defined in terms of 
the L2-norm (Burg et al. 2002): 
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where, Ai is the area of each cell/element.  The edge 
lengths of even a fairly uniform unstructured mesh can 
vary and all the triangles are usually not equilateral for a 
good quality smooth mesh.  To circumvent these issues, 
a triangular mesh was generated and then each triangle 
was subdivided into 4 triangles.  The resulting meshes 
consist of only equilateral triangles and at each 
successive refinement step the mesh resolution is 
exactly doubled.  The order of accuracy, p of a 
numerical scheme can be obtained from: 
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where, E2h/Eh is the ratio of error between meshes of 
resolutions h and 2h.  The average order of accuracy 
obtained from the test was 2.05.  Table 1 lists some of 
the parameters of the three meshes used in the study 
and Figure 3 shows an intermediate mesh for the 
triangular domain.  The mesh shown has 1024 cells. 
One refinement step on it will result in Mesh 1.  The 
computed solution on Mesh 2 is shown in Figure 4.  
Figure 5 shows the reduction in error as the mesh 
resolution is increased and the associated 
computational cost is shown in Figure 6.  It is clear that 
given a finite amount of resources, a global refinement 
of the mesh may not be a feasible way to improve the 
solution accuracy.  One way to achieve computational 
efficiency would be to use solution-adaptive techniques. 

 
Table 1: Grids used in the convergence study. 

mesh ∆∆∆∆x cells 

1 0.1804 4096 
2 0.0902 16384 
3 0.0451 65536 

 
Figure 3:  An intermediate mesh. 

 
Figure 4:  Computed solution on Mesh 2. 

 
Figure 5:  Error vs. ∆x. 

 
Figure 6:  Run-time vs. error. 

 

3.2 Solution-Adaptation 

The basic idea behind adaptive mesh refinement is 
to distribute the error equally over a computational 
mesh.  The regions, where numerical error is large, are 
refined to provide greater spatial accuracy.  In the 
current study, adaptation was achieved via h-refinement 
in which, the conservation of quantities is easier to 
maintain during interpolation and computational 
overhead is also smaller compared to, e.g., re-meshing. 

If the exact solution is known then the error-
indicator (adaptation criteria) can easily be defined in 
terms of relative error or a similar quantity.  In practice 
the exact solution is not known a priori.  The regions of 
large errors however usually coincide with regions of 
high gradients.  There are various ways in which one 
can define the adaptation criteria (Ahmad et al. 1998; 
Löhner 2001; Ghorai et al. 2000; Gopalakrishnan et al. 
2002) depending on the problem.  Ahmad et al. (1998) 
tag cells for refinement based on a Gaussian function 
around Lagrangian particles (for atmospheric dispersion 
simulations).  The adaptation criteria proposed by 
Löhner (2001) is a function of the Laplacian, first 
derivatives and differences (for tracking shock wave 
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propagation, fluid-structure interactions, etc.).  Ghorai et 
al. (2000) have based their error-indicator on the 
difference between the first and second-order solutions 
(for Eulerian transport and diffusion simulations). 

In the current study a simple error-indicator was 
used.  Three radii were defined – Rcon was set to the 
radius of the cone; Rref was 2 units larger than Rcon and 
Rcor was defined as 4 units larger than Rcon (see Figure 
7).  The maximum and minimum allowable edge lengths 
were also specified.  The cells were tagged for 
refinement if a cell with large edge lengths was found 
between Rcon and Rref and cells were tagged for deletion 
if a cell with small edge lengths was found outside the 
circle defined by Rcor.  The refinement cycle was 
invoked every 15 iterations and the coarsening cycle 
was invoked every 150 iterations. 

The adaptation criteria used in this study is simple, 
but has direct relevance to dispersion modeling.  An 
area of influence, e.g., can be defined around the puff 
centers as the adaptation criteria. 

 

 
Figure 7:  Rotating Cone Test.  Adaptation criteria. 

 
The domain was bounded within [0,100] x [0,100].  

The cone was centered at (xc, yc) = (50,75) with a radius 
of 10 units.  The rotational flow field was defined as 
follows: 

 )(),( oyyyxu −−= ω  (19) 

 )(),( oxxyxv −= ω  (20) 

where, u(x,y) and v(x,y) are the velocities in the x and y-
direction respectively, ω = 0.4 is the constant angular 
velocity and (xo, yo) = (50,50) is the center of the mesh.  
The simulation was run for 15.7079 s (time taken by the 
cone to complete one revolution = 2π/ω).  The 
unstructured mesh was defined in terms of boundary 

edges (100 edges on each side for the globally refined 
mesh and 25 edges on each side for the adaptive 
mesh).  The adaptive mesh started with a minimum 
edge length of 0.337 and a maximum edge length of 
4.667.  Some of the mesh parameters are listed in Table 
2.  The boundary conditions are defined with the help of 
ghost cells (LeVeque 2002), which are mirrors of the 
boundary cells.  Transmissive boundary conditions 
(LeVeque 2002) were used in the calculations. 

Figure 8 shows the initial concentration contours, 
tracer field at an intermediate stage and after one 
revolution for the solution-adaptive run.  Errors and 
timings for the solution-adaptive run and the simulation 
on a globally refined mesh are tabulated in Table 2.  
The timing was obtained by using the Linux time 
command.  Calculations were made on a P4 Dell Laptop 
running RedHat Linux 7.3.  The phase error was defined 
as follows (Iselin et al. 2002): 

 22 )()( compexactcompexact
phase yyxxE −+−=  (21) 

where, xexact and yexact are the coordinates of cell in 
which the tracer maxima lies for the exact solution and 
xcomp and ycomp are the coordinates of the cell in which 
the maxima lies for the computed solution.  The 
diffusion error was found by subtracting the computed 
tracer maxima from the exact value of the tracer 
maxima (Iselin et al. 2002): 

 )max()max( compexact
diffusion qqE −=  (22) 

 
Table 2:  Rotating Cone Tests 

 fine adaptive 

EL2 0.35297 0.79073 
Ephase 0.29900 0.56245 

Ediffusion 0.13924 0.16537 

real time ~130 min ~35 min 

max edge 1.27941 4.93815 

min edge 0.21593 0.22007 

ncellsinitial 48366 4830 

ncellsfinal 48366 7872 

 
The adaptive mesh reproduces comparable results 

to the globally refined mesh at a reduced computational 
cost (adaptive run is approximately 4 times faster).  It 
should be noted that the code used to generate the 
results is still under development and is more of a 
research tool currently.  A further reduction in timing 
may be achieved by code optimization.  The comparison 
of the computed tracer field on the adaptive mesh and 
the globally refined mesh with the exact solution is 
shown in Figure 9.  The figure shows concentration 
profiles at y = 75 for x between 25 and 75.  The adaptive 
run is slightly more diffusive than the run on the globally 
refined mesh. 
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Figure 8:  Rotating Cone Test.  Initial conditions (top); at 
an intermediate stage (middle) and after one complete 
revolution (bottom). 

 
Figure 9:  Rotating Cone Test.  Comparison with exact 
solution. 

 

3.3 Advection-Diffusion 

In this section the results of the test case for the 
advection-diffusion equation proposed by Noye and Tan 
(1989) are presented.  The test case describes the 
diffusion of an initial Gaussian pulse as it is advected 
along a straight line.  The domain was bounded within 
[0,2] x [0,2].  The mesh was defined in terms of 
boundary edges (100 edges on each side of the 
computational domain).  The resulting mesh consisted 
of 39386 cells.  The analytical solution of the unsteady 
advection-diffusion for the Noye-Tan test case is given 
by: 
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where, kx = ky = 0.01 are the diffusion coefficients and u 
= v = 0.8 are the velocities in the x- and y-direction 
respectively.  xo = yo = 0.5 is the center of the initial 
tracer distribution.  The initial conditions and the 
Dirichlet boundary conditions can be obtained from the 
analytical solution by setting t = 0.  The simulation was 
ran for t = 1.25.  The initial conditions and the computed 
solution at t = 1.25 are shown in Figure 10.  A 
comparison between the exact solution and the 
computed solution along the mesh diagonal is shown in 
Figure 11.  The computed solution matches well with the 
exact solution in the current study.  Solution-adaptation 
was not used in this simulation. 

In this test case no source terms are included which 
simplifies the problem.  Validations against cases that 
include the source terms (analytical cases as well as 
experimental data) will have to be conducted to further 
verify the robustness of the flow solver. 
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Figure 10:  Noye-Tan Test.  Initial conditions (top) and 
solution at t=1.25 (bottom). 

 
Figure 11:  Comparison between the exact solution and 
the computed solution along the mesh diagonal. 

4 CONCLUSIONS 

A higher-order Godunov-type scheme was applied 
to model Eulerian transport on unstructured grids.  The 
method was validated against analytical solutions for 
different benchmark cases and the results are 
encouraging.  The scheme is conservative and exhibits 
minimal numerical diffusion and dispersion errors.  It 
was also shown that the solution-adaptive technique 
improves the computational efficiency while maintaining 
the fidelity of the solution. 
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